Physics with the HERA Collider

- Introduction to Electron-Proton Deep Inelastic Scattering Quark-Parton-Model, Structure Functions, Quantum Chromodynamics
- Measurements of the Structure Functions
- Gluon density and the Strong Coupling Constant
- Testing the Electroweak Model in the Space-like Region
- Open questions
- Conclusions

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

HERA - the world's largest electron microscope (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany)

From Rutherford to Deep Inelastic Scattering (DIS)

• proton spin + target mass correction (Z=1):

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{4E^2 \sin^4(\theta/2)} \frac{1}{EE'} (\cos^2(\theta/2) + 2\tau \sin^2(\theta/2))$$

$$d\Omega = \left(\pi / E'^2\right) dQ^2 \qquad \tau = Q^2 / (4M^2)$$

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Deep Inelastic Scattering (DIS)

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

(momentum transfer)² virtuality of $\gamma^{*}, Z^{0}, W^{\pm}$ \rightarrow ("size" of the probe)⁻¹

 $= -q^{2}$

 $x = \frac{Q^2}{2P \cdot a}$

 $y = \frac{P \cdot q}{P \cdot k}$

 $s = (k+P)^2$

 $= (q+P)^2$

fraction of the proton momentum carried by the charged parton

fraction of the electron energy carried by the virtual photon (*"inelasticity*")

center of mass energy of ep system

(mass)² of γ^*p system

$$Q^2 = sxy$$

The Kinematic Reach of HERA

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Cross Section and Structure Functions

$$e^{\pm} \underbrace{k \sqrt{\alpha}}_{\gamma \neq q} \underbrace{d^{2}\sigma}_{d\Omega dE'} = \frac{\alpha^{2}}{2MQ^{4}} \underbrace{E'}_{E} L_{\mu\nu} W^{\mu\nu} \qquad L_{\mu\nu} \text{ lepton tensor} \\ W_{\mu\nu} \text{ hadronic tensor} \\ U_{\mu\nu} = 2 \Big[k_{\mu}k_{\nu}' + k_{\mu}'k_{\nu} + \frac{q^{2}}{2}g_{\mu\nu} \Big] \leftarrow \text{minimal electromagnetic coupling} \\ (\text{unpolarized particles}) \qquad W_{\mu\nu} = \Big(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^{2}} \Big) 2F_{1} + \Big(P_{\mu} - \frac{P \cdot q}{q^{2}}q_{\mu} \Big) \Big(P_{\nu} - \frac{P \cdot q}{q^{2}}q_{\nu} \Big) \frac{2}{P \cdot q} F_{2} \\ \text{most general tensor satisfying charge conservation} \\ \text{NC cross section :} \qquad \Big(\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{\pi\alpha^{2}}{4E^{2}\sin^{4}(\theta/2)} \frac{1}{EE'} \Big(F_{2}\cos^{2}(\theta/2) + F_{1}2\tau\sin^{2}(\theta/2) \Big) \Big) \\ \frac{d^{2}\sigma(e^{\pm}p)}{dxdQ^{2}} = \frac{4\pi\alpha^{2}}{xQ^{4}} \Big[xy^{2}F_{1} + (1-y)F_{2} \Big] \qquad F_{L} \equiv F_{2} - 2xF_{1} \\ \text{longitudinal structure function} \\ = \frac{2\pi\alpha^{2}}{xQ^{4}} \Big[Y_{+}F_{2} - y^{2}F_{L} \Big] \qquad Y_{\pm} = 1 \pm (1-y)^{2} \end{aligned}$$

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Structure Functions within the Quark-Parton-Model

- electron scatters off a charged constituent (parton) of the proton (= elastic scattering)
- identify the charged partons with QUARKS (= spin 1/2 fermions)
 - Quark-Parton-Model (QPM)

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

$$\frac{d^{2}\sigma(e^{x}p)}{dx dQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \left[Y_{+}F_{2} - y^{2}F_{L}\right]$$
QPM: $F_{2}(x) = \sum_{i=u,d} e_{i}^{2}xq_{i}(x)$ parton densities $xq_{i}(x)$ (pdf)
$$F_{2} = \begin{bmatrix} & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

Quantum Chromodynamics (QCD)

Basic ingredients of QCD:

1. Asymptotic freedom (Nobel Prize 2004):

non-perturbative part

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

3. Evolution :

Parton evolution according to Altarelli-Parisi (DGLAP) integro-differential equations:

$$\frac{d}{d\ln Q^2} \begin{pmatrix} g \\ q_S \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \begin{bmatrix} P_{gg} & P_{gq} \\ P_{qg} & P_{qq} \end{bmatrix} \otimes \begin{pmatrix} g \\ q_S \end{pmatrix}$$
$$\frac{d}{d\ln Q^2} q_{NS} = \frac{\alpha_s(Q^2)}{2\pi} P_{qq}^{NS} \otimes q_{NS}$$

$$\begin{split} q_{S}(x,Q^{2}) &= \sum_{i} (q_{i} + \overline{q}_{i}) \\ q_{NS}(x,Q^{2}) &= \sum_{i} (q_{i} - \overline{q}_{i}) \end{split}$$

 P_{ii} : splitting functions

$$\frac{1}{x}F_2(x,Q^2) = \sum_{i=1}^{n_f} e_i^2 C_i(x,Q^2) \otimes (q+\overline{q})(x,Q^2) + C_g(x,Q^2) \otimes g(x,Q^2)$$

 $C_{i}(x,Q^{2}),C_{g}(x,Q^{2}),P_{ij} \text{ calculable in QCD } \sim O\left(\alpha_{\mathrm{S}}\left(Q^{2}\right)\right)+\ldots$

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Quantitative Picture of the DGLAP Evolution

Ansatz for parton densities (non-pertubative): $ma(m,Q) = Am^B(1-m)^C [1+D] \sqrt{m} + Em + C$

$$xq(x,Q_0) = Ax^B(1-x)^C [1 + D\sqrt{x} + Ex + ...]$$

Quarks carry only about 1/2 of the nucleon momentum:

Electron Proton Scattering in Real Detectors

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Precision Measurements of F_2

$$\frac{d^{2}\sigma\left(e^{\pm}p\right)}{dx\,dQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \Big[Y_{+}\,F_{2} - y^{2}F_{L}\Big]$$

- $\hfill measured cross section in bins of <math display="inline">x$ and Q^2
- ightarrow to measure $F_{_2}$ need to get rid of $F_{_L}$!
- cut: use only events with $y < y_{\rm cut}$ (typically $y_{\rm cut} = 0.6$)
- Correct for remaining contribution using QCD

Big surprise in the early HERA running:

 $F_{\!_2}\,$ rising much faster with falling x than expected in Regge picture

ZEUS+H1

Precision Measurements of F_2

$$\frac{d^2\sigma\left(e^{\pm}p\right)}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[Y_+\,F_2^{} - y^2F_L\Big]$$

- Measured cross section in bins of x and Q^2
- ightarrow to measure $F_{_2}$ need to get rid of $F_{_L}$!
- cut: use only events with $y < y_{\rm cut}$ (typically $y_{\rm cut} = 0.6$)
- Correct for remaining contribution using QCD

Big surprise in the early HERA running:

 F_2 rising much faster with falling x than expected in Regge picture

HERA data overlap and agree with fixed target data, similar in precision

Data well described by QCD evolution

ZEUS+H1

Precise SF data from HERA

Strong Rise of $F_{\!\scriptscriptstyle 2}$ Towards low x

QCD fits: rise is driven by the gluons

Parameterize low x part of $F_2 \sim x^{-\lambda}$

ZEUS+H1

At low $Q^2\,$ the slope $\lambda\,$ is approaching the "soft" Regge limit

2004 Nobel Prize in Physics for the Discovery of Asymptotic Freedom David Gross, David Politzer, Frank Wilczek

Frank Wilczek: ... The most dramatic of these (experimental consequences), that protons viewed at ever higher resolution would appear more and more as field energy (soft glue), was only clearly verified at HERA twenty years later. ...

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

PDFs from HERA

Parton distributions (NLO): unfolded using the HERA $e^{\pm}p$ data only

H1: NC+CC $U, \overline{U}, D, \overline{D}, xg \leftrightarrow V, A, xg, \alpha_s$

ZEUS: NC+CC & jets $u_v, d_v, \overline{u} \pm \overline{d}, xg, \alpha_s$

treatment of systematics, parameterisation forms and other details are subject to conventions

→ PDFs from the H1, ZEUS and global fits are in agreement

Gluon:

- dominant at low x
- Note: the scale for xg distr. is 10 times larger
- \rightarrow scaling violations
 - xg is not an observable
 - at Q^2 of a few GeV² gluons become valence-like
- \rightarrow jets, heavy flavours, $F_L(x,Q^2)$
 - directly sensitive to xg
 - jets constrain xg at x ~ 0.1
 - F_L can pin down xg at low x

The Longitudinal Structure Function $F_{\scriptscriptstyle L}$

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Longitudinal Structure Function (cont.)

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

QCD: Strong Coupling Constant

ZEUS NLO QCD fit (inclusive & jets)

Summary for Strong Coupling at HERA

HERA-average:

 $\alpha_s(M_Z^2) = 0.1186 \pm 0.0011(\exp.) \pm 0.0050(\text{th.})$

- small experimental error ~1%
- theory error dominates (NLO)
- call for NNLO

Charm Production

-> dominated by Boson Gluon Fusion (BGF) p/q pdf's \otimes pQCD \otimes fragmentation -> resolved photon plays important role in γp

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

 m_c^2 , Q^2 , p_t^2

HERA ep results are consistent with e⁺e⁻

supporting universality

measurements

of fragmentation

Charm Structure Function F₂^{cc} (x,Q2)

with decreasing of x (similar to F_2)

Beauty identification techniques

Beauty Structure Function F₂^{bb} (x,Q2)

Summary for beauty at HERA

HERA collider experiments

 NLO is consistent both with DIS and yp data
 (although systematically higher)

HERA-B

- close to kinematic threshold
- old and new results are compatible within 1.5 σ

Electroweak Sector: Scattering at high $Q^{\,2}$

ZEUS

NC Cross Section at high Q^2 and xF_3

$$\begin{split} \tilde{\sigma}_{_{NC}}(e^{\pm}p) &\sim \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 \\ Y_{\pm} &= 1 \pm (1-y)^2 \end{split}$$

New structure function xF_3 $xF_3(x,Q^2) =$ $\sum_i e_i^2 \left(xq(x,Q^2) - x\overline{q}(x,Q^2) \right)$

 $F_{\!\scriptscriptstyle L}\,{\rm can}$ be safely neglected at high Q^2

Difference between $e^\pm p$ is due to γZ interference

NC Cross Section at high x and xF_3

CC Cross Section at high $\,Q^2$ and the valence quarks

 $ep \rightarrow \nu X$

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Charged Currents & flavour separation

HERA Charged Current

The CC e⁺p cross section - dominated by d quark $\tilde{\sigma}_{CC}^{e^+p}(x,Q^2) \sim (\overline{u}+\overline{c}) + (1-y)^2(d+s)$

The CC e⁻p cross section - dominated by u quark $\tilde{\sigma}_{CC}^{e^-p}(x,Q^2) \sim (u+c) + (1-y)^2(\overline{d}+\overline{s})$

- constrain d (u) quark density
- free of nuclear corrections and isospin assumptions

New Hadronic States: Pentaguarks

θ^+ search at HERA

Observation of an Anti-charm Pentaguark

New state seen in H1: a charmed pentaguark $\theta_C \to D^{*-} p(D^{*+} \overline{p}) \quad uudd\overline{c}$

ZEUS/CDF do not confirm the signal ...

Charmed pentaquarks?

ZEUS

- no evidence for a signal at 3100 MeV
- in the phase space similar to H1:

R_{corr}(D*p/D*) < 0.59% at 95% CL

< 0.51% when including D*->(K $\pi\pi\pi$) π_s compared to H1:

 $R_{corr}(D^{*}p/D^{*}) = (1.59 \pm 0.33 + 0.33 - 0.45)\%$

-> still incompatible

HERA II: High Lumi & Polarization of Leptons

HERA II performance

data taking until mid 2007: ~O(0.7) fb⁻¹ per experiment in total

HERA II:

- detectors and luminosity upgrade

	e⁺p	e⁻p
HERA I:	100 pb ⁻¹	20 pb ⁻¹
HERA II:	50 pb ⁻¹	100 pb ⁻¹

 longitudinally polarized e beam in the colliding experiments

First results from HERA II

 $\sigma_{\textit{CC}}$ total cross section using longitudinally polarized e+ and e-

weak CC is pure left-handed (V-A):

$$\sigma_{CC}^{e^{\pm}p}(P_{e}) = (1 \pm P_{e})\sigma_{CC}^{e^{\pm}p}(P_{e} = 0)$$

$$P_{e}=(N_{R}-N_{L})/(N_{R}+N_{L})$$

- linear dependence is firmly established both for $e^{\scriptscriptstyle +}$ and $e^{\scriptscriptstyle -}$
- in agreement with SM
- extrapolation to P_e =-1 (e⁺p):

extrapolations to $P_e=-1,+1$ test the absence of right-handed weak current

 $\sigma_{CC}^{e^+p}(P_e = -1) = -0.2 \pm 1.8(sta) \pm 1.6(sys)pb$ -> consistent with zero

Isolated leptons with PTmiss at HERA

Isolated leptons with PTmiss at HERA (cont.)

T-lepton channel (P_T^x > 25 GeV) ZEUS (130 pb⁻¹) 2 / 0.20 H1 (108 pb⁻¹) 0 / 0.53

Summary & Outlook

Rich physics output from HERA:

- centered around QCD, but also EW, searches, ...
- key word: precision
- investigate implications of QCD (evolution, scales, ...)
- provide information essential for the LHC collider, see HERA-LHC workshop: http://www.desy.de/~heralhc/
- very often data are more precise than theory
- theory should catch up (... and it happens, e.g. NNLO in DIS)

HERA II:

- lumi is a main issue !!! ~ O(0.7fb-1) per experiment in total, exploit new detectors/triggers
- clarify isolated leptons, pdfs, HF, penta quarks, FL, ...
- less than 2 years of running time left (until mid of 2007) ...