Physics with the HERA Collider

- Introduction to Electron-Proton Deep Inelastic Scattering

Quark-Parton-Model, Structure Functions, Quantum Chromodynamics

- Measurements of the Structure Functions
- Gluon density and the Strong Coupling Constant

- Testing the Electroweak Model in the Space-like Region
- Open questions
- Conclusions

HERA - the world's largest electron microscope (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany)

HERA start: 1992 upgraded in 2001: "HERA II

From Rutherford to Deep Inelastic Scattering (DIS)

$$
\begin{aligned}
& \left(k-k^{\prime}\right)^{2}=q^{2} \underbrace{E^{\prime}}{ }^{k^{\prime}} \text { Coulomb force: } F=\frac{1}{4 \pi \varepsilon_{0}} \frac{e Z e}{r^{2}} \quad \begin{array}{l}
\text { scattering of } \\
\text { spinless objects }
\end{array} \\
& =-Q^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {Ruth }}=\frac{\alpha^{2} Z^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \quad \alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}
\end{aligned}
$$

- include spin of beam electron: $\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Ruth }}\left(1-\sin ^{2}(\theta / 2)\right)$
(no backscattering)
- proton spin + target mass correction ($Z=1$):

$$
\begin{gathered}
\frac{d \sigma}{d Q^{2}}=\frac{\pi \alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \frac{1}{E E^{\prime}}\left(\cos ^{2}(\theta / 2)+2 \tau \sin ^{2}(\theta / 2)\right) \\
d \Omega=\left(\pi / E^{\prime 2}\right) d Q^{2} \quad \tau=Q^{2} /\left(4 M^{2}\right)
\end{gathered}
$$

Deep Inelastic Scattering (DIS)

QPM

$$
\begin{aligned}
& Q^{2}=-\left(k-k^{\prime}\right)^{2} \quad(\text { momentum transfer })^{2} \\
& =-q^{2} \quad \text { virtuality of } \gamma^{*}, Z^{0}, W^{ \pm} \\
& \rightarrow(\text {.size" of the probe })^{-1} \\
& \text { fraction of the proton } \\
& \text { momentum carried by } \\
& \text { the charged parton } \\
& \text { fraction of the electron } \\
& \text { energy carried by the } \\
& \text { virtual photon } \\
& \text { (.,inelasticity") } \\
& s=(k+P)^{2} \quad \text { center of mass energy } \\
& \text { of ep system } \\
& \text { (mass) }{ }^{2} \text { of } \gamma^{*} p \text { system } \\
& Q^{2}=s x y
\end{aligned}
$$

The Kinematic Reach of HERA

Determination of kinematics („e"-method):

$$
Q^{2}=4 E E^{\prime} \cos ^{2}\left(\frac{\theta}{2}\right)
$$

$$
y=1-\frac{E^{\prime}}{E} \sin ^{2}\left(\frac{\theta}{2}\right)
$$

$$
x=\frac{Q^{2}}{s y}
$$

Determination of cross sections :
$\frac{d^{2} \sigma}{d x d Q^{2}} \sim \frac{N-B}{\mathcal{L} \varepsilon} \overbrace{\text { luminosity }} \geqslant$ efficiency

Cross Section and Structure Functions

 most general tensor satisfying charge conservation

Structure Functions within the Quark-Parton-Model

- electron scatters off a charged constituent (parton) of the proton (= elastic scattering)
- identify the charged partons with QUARKS (= spin $1 / 2$ fermions)
\longrightarrow Quark-Parton-Model (QPM)

$\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[Y_{+} F_{2}-y^{2} F_{L}\right]$
QPM: $\quad F_{2}(x)=\sum_{i=u, d} e_{i}^{2} x q_{i}(x) \quad \begin{gathered}\text { parton densities } \\ x q_{i}(x) \quad(\mathrm{pdf})\end{gathered}$

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

HERA's discovery:

strong rise of the parton densities at low momentum fraction

The new picture of the proton

Quantum Chromodynamics (QCD)

Basic ingredients of QCD:

3. Evolution:

Parton densities become functions of Q^{2}

$$
\begin{aligned}
& x q_{i}(x) \rightarrow x q_{i}\left(x, Q^{2}\right) \\
& x \bar{q}_{i}\left(x, Q^{2}\right) \text { quarks } \\
& \text { antiquarks }
\end{aligned}
$$

Quantum Chromodynamics (cont.)

Parton evolution according to Altarelli-Parisi (DGLAP) integro-differential equations:

$$
\begin{aligned}
\frac{d}{d \ln Q^{2}}\binom{g}{q_{S}} & =\frac{\alpha_{S}\left(Q^{2}\right)}{2 \pi}\left[\begin{array}{ll}
P_{g g} & P_{g q} \\
P_{q g} & P_{q q}
\end{array}\right] \otimes\binom{g}{q_{S}} \\
\frac{d}{d \ln Q^{2}} q_{N S} & =\frac{\alpha_{S}\left(Q^{2}\right)}{2 \pi} P_{q q}^{N S} \otimes q_{N S}
\end{aligned}
$$

$$
q_{S}\left(x, Q^{2}\right)=\sum_{i}\left(q_{i}+\bar{q}_{i}\right)
$$

$$
q_{N S}\left(x, Q^{2}\right)=\sum_{i}\left(q_{i}-\bar{q}_{i}\right)
$$

$$
P_{i j}: \text { splitting functions }
$$

$$
\begin{gathered}
\frac{1}{x} F_{2}\left(x, Q^{2}\right)=\sum_{i=1}^{n_{f}} e_{i}^{2} C_{i}\left(x, Q^{2}\right) \otimes(q+\bar{q})\left(x, Q^{2}\right)+ \\
C_{g}\left(x, Q^{2}\right) \otimes g\left(x, Q^{2}\right)
\end{gathered}
$$

$C_{i}\left(x, Q^{2}\right), C_{g}\left(x, Q^{2}\right), P_{i j}$ calculable in QCD $\sim O\left(\alpha_{\mathrm{S}}\left(Q^{2}\right)\right)+\ldots$
Theoretical approach: \quad QCD fits to F_{2} using gluon and quark densities

Test of the QCD evolution

\longrightarrow input: parton densities at some (low) $Q_{0}{ }^{2}$
\longrightarrow fit F_{2} for $Q^{2}>Q_{0}{ }^{2}$

Quantitative Picture of the DGLAP Evolution

Ansatz for parton densities (non-pertubative):

$$
x q\left(x, Q_{0}\right)=A x^{B}(1-x)^{C}[1+D \sqrt{x}+E x+\ldots]
$$

QCD evolution (perturbative):

Quarks carry only about 1/2 of the nucleon momentum:

Electron Proton Scattering in Real Detectors

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

ZEUS+H1

$\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[Y_{+} F_{2}-y^{2} F_{L}\right]$
(measured cross section in bins of x and Q^{2}
\longrightarrow to measure F_{2} need to get rid of F_{L} !

- cut: use only events with $y<y_{\text {cut }}$ (typically $y_{\text {cut }}=0.6$)
- Correct for remaining contribution using QCD

Big surprise in the early HERA running:

\longrightarrow| $F_{2} \begin{array}{l}\text { rising much faster with falling } x \\ \text { than expected in Regge picture }\end{array}$ |
| :---: |

ZEUS+H1

$$
\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[Y_{+} F_{2}-y^{2} F_{L}\right]
$$

(measured cross section in bins of x and Q^{2}
\longrightarrow to measure F_{2} need to get rid of F_{L} !

- cut: use only events with $y<y_{\text {cut }}$ (typically $y_{\text {cut }}=0.6$)
- Correct for remaining contribution using QCD

Big surprise in the early HERA running:
$\longrightarrow F_{2}$ rising much faster with falling x than expected in Regge picture

HERA data overlap and agree with fixed target data, similar in precision

Data well described by QCD evolution

Precise SF data from HERA

rich possibilities to determine pdfs, test QCD (DGLAP, BFKL, ...), transition from DIS to $\gamma \mathrm{p}$,

Strong Rise of F_{2} Towards low x

QCD fits: rise is driven by the gluons
Parameterize low x part of $F_{2} \sim x^{-\lambda}$

At low Q^{2} the slope λ is approaching the "soft" Regge limit

2004 Nobel Prize in Physics for the Discovery of Asymptotic Freedom David Gross, David Politzer, Frank Wilczek

Frank Wilczek: ... The most dramatic of these (experimental consequences), that protons viewed at ever higher resolution would appear more and more as field energy (soft glue), was only clearly verified at HERA twenty years later. ...

PDFs from HERA

Parton distributions (NLO): unfolded using the HERA $e^{ \pm} p$ data only

$$
H 1: \quad \mathrm{NC}+\mathrm{CC} \quad U, \bar{U}, D, \bar{D}, x g \leftrightarrow V, A, x g, \alpha_{s}
$$

ZEUS: NC+CC \& jets $u_{v}, d_{v}, \bar{u} \pm \bar{d}, x g, \alpha_{s}$
treatment of systematics, parameterisation forms and other details are subject to conventions
\rightarrow PDFs from the H 1, ZEUS and global fits

Gluon:

are in agreement

- dominant at low x
- Note: the scale for $x g$ distr. is 10 times larger
\rightarrow scaling violations
- $x g$ is not an observable
- at Q^{2} of a few GeV^{2} gluons become valence-like
\rightarrow jets, heavy flavours, $F_{L}\left(x, Q^{2}\right)$
- directly sensitive to xg
- jets constrain $x g$ at $x \sim 0.1$
- F_{L} can pin down $x g$ at low x

The Longitudinal Structure Function F_{L}

LO QCD :

$$
\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[Y_{+} F_{2}-y^{2} F_{L}\right] \quad \begin{aligned}
& \text { in principle need } \\
& 2 \text { measurements at } \\
& \text { different } \sqrt{s}
\end{aligned}
$$

$$
F_{L} \text { important at high } y(=\operatorname{low} x)
$$

"Subtraction method"

Longitudinal Structure Function (cont.)

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

QCD: Strong Coupling Constant

Spectacular multi-jet events (here: di-jet event)
\Rightarrow hadronic final state

(multi) jet events:

ZEUS NLO QCD fit (inclusive \& jets)

Include jets in direct yp and DIS into a QCD fit

Boson Gluon Fusion : depends on $x g(x)$ \rightarrow constrains gluon at medium \& high $\times(0.01-0.4)$

QCD-Compton:
depends on $q(x)$ and a_{s}

Gluon uncertainty (with/wo jets)

Strong coupling:

$$
\begin{aligned}
& \alpha_{s}\left(M_{Z}^{2}\right)=0.1183 \pm 0.0028(\exp) \\
& \pm 0.0008(\text { model }) \pm 0.0050(\text { scales })
\end{aligned}
$$

Summary for Strong Coupling at HERA

- small experimental error ~1\%
- theory error dominates (NLO)
- call for NNLO

Charm Production

-> dominated by Boson Gluon Fusion (BGF)
p / g pdf's $\otimes \mathrm{pQCD} \otimes$ fragmentation
-> resolved photon plays important role in γp

Fractional rates of charmed hadrons

Fractional momentum of
D^{*} from c-quark

Perturbative QCD:

- hard scale $m_{c}{ }^{2}$.
- multi-scale problem

$$
m_{c}{ }^{2}, Q^{2}, p_{t}^{2}
$$

PDFs:

- directly sensitive to xg
- photon structure

Fragmentation:
Hi hemighere method HERA ep results are
 measurements, supporting universality of fragmentation
C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

Charm Structure Function $F_{2}{ }^{c c}(x, Q 2)$

- charm contribution up to 25-30\%
- consistent with gluon from scaling violations

- scaling violations of $\mathrm{F}_{2}{ }^{c c}$ are increasing with decreasing of x (similar to F_{2})

Beauty identification techniques

μ - transverse momentum and impact parameter

Two-quark correlations
$D^{\star} \mu, \mu \mu(Q, m, \varphi)$

- heavy mass
- long lifetime
- decay channels (μ, D)
- production (correlations)

Inclusive lifetime tag

- all tracks with $p_{\dagger}>500 \mathrm{MeV}$
- subtract the contents of negative bins
- both c and b are defined from the fit
- small extrapolation to the full phase space

Beauty Structure Function $F_{2}{ }^{\text {bb }}(x, Q 2)$

- measured for the first time
- compared with NLO and NNLO

Cross section fractions

- charm roughly constant ~ 24%
- beauty changes from $\sim 0.3 \%$ to $\sim 3 \%$

Summary for beauty at HERA

HERA collider experiments

- NLO is consistent both with DIS and yp data (although systematically higher)

HERA-B

- close to kinematic threshold
- old and new results are compatible within 1.5σ

Electroweak Sector: Scattering at high Q^{2}

$\operatorname{High} Q^{2} \approx M_{Z}^{2}, M_{W}^{2}$

NC Cross Section at high Q^{2} and $x F_{3}$

$$
\begin{aligned}
\tilde{\sigma}_{N C}\left(e^{ \pm} p\right) & \sim \tilde{F}_{2} \mp \frac{Y_{-}}{Y_{+}} x \tilde{F}_{3} \\
Y_{ \pm} & =1 \pm(1-y)^{2}
\end{aligned}
$$

New structure function $x F_{3}$

$$
\begin{aligned}
& x F_{3}\left(x, Q^{2}\right)= \\
& \sum_{i} e_{i}^{2}\left(x q\left(x, Q^{2}\right)-x \bar{q}\left(x, Q^{2}\right)\right)
\end{aligned}
$$

F_{L} can be safely neglected at high Q^{2}

Difference between $e^{ \pm} p$ is due to γZ interference

NC Cross Section at high x and $x F_{3}$

$$
\tilde{\sigma}_{N C}^{ \pm}=F_{2} \mp \frac{Y_{-}}{Y_{+}} x F_{3}
$$

HERA Neutral Current at high \mathbf{x}

mostly due to γZ interferentice:

$$
\mathrm{XF}_{3}^{\gamma Z}=\mathrm{XF}_{3} /\left[-\mathfrak{a}_{\mathrm{e}} \mathrm{~K}_{\mathrm{w}} /\left(\mathrm{O}^{2}+\mathrm{M}_{\mathrm{Z}}^{2}\right)\right]
$$

sensitive to EW param. \& polarisation
$x F_{3}$ constrains u_{v}, d_{v} at high x
C. Kiesling, IMPRS, 1st Block Course, October 19, 2005

CC Cross Section at high Q^{2} and the valence quarks

Charged Currents \& flavour separation

HERA Charged Current

Light Quark Couplings to the Z^{0}

first coherent EW +PDF analysis at HERA (NC+CC data)

$$
\begin{array}{ll}
a_{q}=I_{q}^{3} \rightarrow\left(a_{u}=+1 / 2 ; a_{d}=-1 / 2\right) & F_{2} \approx F_{2}^{e m}+\left(v_{e}^{2}+a_{e}^{2}\right) K_{z}^{2} \cdot x \sum\left(v_{q}^{2}+a_{q}^{2}\right)(q+\bar{q}) \\
v_{q}=I_{q}^{3}-2 e_{q} \sin ^{2} \theta_{W} & x F_{3}^{N C} \approx-a_{e} K_{Z} \cdot 2 x \sum e_{q} a_{q}(q-\bar{q})
\end{array}
$$

TeVatron: qq \rightarrow ee Drell-Yan, $A_{F B}$ LEP: $e e \rightarrow q q(g)\left(a^{2}{ }_{q}+v^{2}{ }_{q}\right)$

- more sensitive to u (pdfs)
- compatible precision with the TeVatron
- helps to resolve LEP ambiguities

New Hadronic States: Pentaquarks

"The nucleon is made from 3 quarks"

$$
\theta^{+}(1530) \rightarrow n K^{+}
$$

uudds

$$
\rightarrow p K_{S}^{0}
$$

ddssū

C. Kiesling, IMPRS, 1st Block Course, October 19, 2005
narrow state, seen recently in several experiments

ZEUS

θ^{+}search at HERA

NO

H1 ($\mathrm{pK}_{\mathrm{s}}^{0}, \overline{\mathrm{p}} \mathrm{S}_{\mathrm{s}}^{0}$)

- limits at 95% CL
- for $Q^{2}>20 \mathrm{GeV}^{2}$: $\sigma<100-120 \mathrm{pb}$ (ZEUS o~120 pb)

HERA-B ($\mathrm{PK}_{s}{ }^{0}$) limits a+ $95 \% \mathrm{cL}$:

Observation of an Anti-charm Pentaquark

New state seen in H1: a charmed pentaquark $\quad \theta_{C} \rightarrow D^{*-} p\left(D^{*+} \bar{p}\right) \quad u u d d \bar{c}$

Mass: 3099 ± 3 (stat.) ± 5 (syst.) MeV Width: 12 ± 3 (stat.) MeV

Background fluctuation prob. 4×10^{-8}

$$
=5.4 \sigma
$$

ZEUS/CDF do not confirm the signal ...

Charmed pentaquarks ?

 .

HERA II: High Lumi \& Polarization of Leptons

HERA II performance

data taking until mid 2007:
$\sim O(0.7) \mathrm{fb}^{-1}$ per experiment in total

HERA II:

- detectors and luminosity upgrade

	$e^{+} \mathrm{p}$	$e^{-\mathrm{p}}$
HERA I:	$100 \mathrm{pb}^{-1}$	$20 \mathrm{pb}^{-1}$
HERA II:	$50 \mathrm{pb}^{-1}$	$100 \mathrm{pb}^{-1}$

- longitudinally polarized e beam in the colliding experiments

First results from HERA II

Isolated leptons with PTmiss at HERA

Double luminosity:
e - excess persists at HERA II
μ - excess comes only from HERA I

Isolated leptons with PTmiss at HERA (cont.)

H1 $e^{+} p:$ excess over SM both in e and μ channels no excess in e^{-p} data

ZEUS in agreement with SM

$H 11994-2005$	$e^{+} p\left(158 \mathrm{pb}^{-1}\right)$		$e^{-p}\left(53 \mathrm{pb}^{-1}\right)$	
	$e($ prel $)$	$\mu($ prel $)$	$e($ prel $)$	$\mu($ prel $)$
All $P_{T} \times$	$19 / 14.6$	$9 / 3.9$	$6 / 5.8$	$0 / 1.5$
$P_{T} \times>25 \mathrm{GeV}$	$9 / 2.3$	$6 / 2.3$	$2 / 0.9$	$0 / 0.9$

τ-lepton channel ($P_{T} \times>25 \mathrm{GeV}$)
ZEUS ($130 \mathrm{pb}^{-1}$) $2 / 0.20$
H1 ($108 \mathrm{pb}^{-1}$) $0 / 0.53$

Summary \& Outlook

Rich physics output from HERA:

- centered around QCD, but also EW, searches, ...
- key word: precision
- investigate implications of QCD (evolution, scales, ...)
- provide information essential for the LHC collider, see HERA-LHC workshop: http://www.desy.de/~heralhc/
- very often data are more precise than theory
- theory should catch up (... and it happens, e.g. NNLO in DIS)

HERA II:

- lumi is a main issue !!! $\sim O(0.7 \mathrm{fb}-1)$ per experiment in total, exploit new detectors/triggers
- clarify isolated leptons, pdfs, HF, penta quarks, FL, ...
- less than 2 years of running time left (until mid of 2007) ...

