# Neutrino Physics — Theory



Werner Rodejohann (TU München) München, 17/10/05

#### Literature

- Bilenky, Giunti, Grimus: *Phenomenology of Neutrino Oscillations*, hep-ph/9812360
- Akhmedov: *Neutrino Physics*, hep-ph/0001264
- Grimus: Neutrino Physics Theory, hep-ph/0307149

## CONTENTS

#### I Neutrino oscillations

- What's a neutrino? What's a mass?
- Oscillations in vacuum and matter
- Results what have we learned?
- Projects what will we learn?

#### II Majorana masses

- See–saw Mechanism
- Structure of neutrino mixing and mass matrices
- Neutrinoless Double Beta Decay
- III Model dependent applications
  - Cosmology: leptogenesis
  - Flavor violation beyond neutrinos

## INTRODUCTION

Standard Model of Particle Physics  $\leftrightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ 

$$Q_{L}^{1} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \quad Q_{L}^{2} = \begin{pmatrix} c \\ s \end{pmatrix}_{L} \quad Q_{L}^{3} = \begin{pmatrix} t \\ b \end{pmatrix}_{L} \quad u_{R}, c_{R}, t_{R} \\ d_{R}, s_{R}, b_{R}$$

$$E_{L}^{1} = \begin{pmatrix} \nu_{e} \\ e^{-} \end{pmatrix}_{L} \quad E_{L}^{2} = \begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}_{L} \quad E_{L}^{3} = \begin{pmatrix} \nu_{\tau} \\ \tau^{-} \end{pmatrix}_{L} \quad \frac{e_{R}, \mu_{R}, \tau_{R}}{1 \text{ o } (\nu_{e})_{R}, (\nu_{\mu})_{R}, (\nu_{\tau})_{R}}$$

$$m_{d} = \mathcal{O}(m_{u})$$

$$m_{s} = \mathcal{O}(m_{c})$$

$$m_{t} = \mathcal{O}(m_{b})$$

$$m_{e} \simeq 0.5 \cdot 10^{6} \text{ eV} \gg m_{\nu_{e}} \lesssim \text{ eV}$$

$$\Rightarrow \text{ Assumption: neutrinos massless}$$

# Limit on Neutrino Masses

Classical Method: Curie–Plot from  $\beta$ –Decay  $Z \to (Z+1) + e^- + \overline{\nu_e}$ 

$$K(E_e) = \sqrt{\frac{dN(E_e)/dE_e}{F(Z', E_e) E_e \sqrt{E_e^2 - m_e^2}}} \propto \sqrt{(E_0 - E_e) \sqrt{(E_0 - E_e)^4 - m_\nu^2}}$$



#### NEUTRINO MASS

- Triton decay  ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{\nu_{e}} \Rightarrow m(\nu_{e}) < 2.3 \text{ eV}$
- future: KATRIN  $m(\nu_e) < 0.2 \text{ eV}$



• cosmology:  $\Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{92.5 \text{ eV}}$ ; structure formation and  $m_{\nu}, \ldots$ 

| Bound on $\sum m_{\nu}$ | Data used                      |
|-------------------------|--------------------------------|
| $0.69 \mathrm{eV}$      | WMAP, 2dF, $H_0$ , Ly $\alpha$ |
| $1.01 \mathrm{~eV}$     | WMAP, 2dF, $H_0$               |
| $1.8  \mathrm{eV}$      | WMAP, SDSS                     |

# MASS TERMS

In SM: Higgs Mechanism

$$\mathcal{L} = h_d \,\overline{Q_L} \,\Phi \,d_R + h_u \,\overline{Q_L} \,\Phi^c \,u_R \stackrel{SSB}{\longrightarrow} \frac{h_d \,v}{\sqrt{2}} \,\overline{d_L} \,d_R + \frac{h_u \,v}{\sqrt{2}} \,\overline{u_L} \,u_R \equiv m_d \,\overline{d_L} \,d_R + m_u \,\overline{u_L} \,u_R$$

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \ E_L = \begin{pmatrix} (\nu_e)_L \\ e_L \end{pmatrix} \text{ and } \Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \xrightarrow{SSB} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h(x) \end{pmatrix}$$

Analogously with leptons:

 $\mathcal{L} = h_{\nu} \,\overline{E_L} \,\Phi^c \,\nu_R + h_e \,\overline{E_L} \,\Phi \,e_R \xrightarrow{SSB} \frac{h_{\nu} \,v}{\sqrt{2}} \,\overline{\nu_L} \,\nu_R + \frac{h_e \,v}{\sqrt{2}} \,\overline{e_L} \,e_R \equiv m_{\nu} \,\overline{\nu_L} \,\nu_R + m_e \,\overline{e_L} \,e_R$ 

No mass term for  $\nu \Leftrightarrow No \nu_R$ 

# NEUTRINO MIXING

Suppose Neutrinos have mass:

$$E_L^1 = \begin{pmatrix} \nu_e \\ e \end{pmatrix}_L, \quad E_L^2 = \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}_L, \quad E_L^3 = \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}_L$$
$$e_R^1 = e_R, \quad e_R^2 = \mu_R, \quad e_R^3 = \tau_R$$
$$\nu_R^1 = (\nu_e)_R, \quad \nu_R^2 = (\nu_\mu)_R, \quad \nu_R^3 = (\nu_\tau)_R$$
$$\Rightarrow \text{Mass Matrices } m_\nu \text{ and } m_\ell:$$

 $\mathcal{L} = h_{\nu}^{ij} \overline{E_L^i} \Phi^c \nu_R^j + h_{\ell}^{ij} \overline{E_L^i} \Phi e_R^j \xrightarrow{SSB} (m_{\nu})_{ij} \overline{(\nu^i)_L} \nu_R^j + (m_{\ell})_{ij} \overline{(e^i)_L} e_R^j$  $\equiv \overline{\nu_L'} m_{\nu} \nu_R' + \overline{\ell_L'} m_{\ell} \ell_R'$ 

with

$$\nu_{L,R}' \equiv \begin{pmatrix} (\nu_e)_{L,R} \\ (\nu_\mu)_{L,R} \\ (\nu_\tau)_{L,R} \end{pmatrix} \text{ and } \ell_{L,R}' \equiv \begin{pmatrix} e_{L,R} \\ \mu_{L,R} \\ \tau_{L,R} \end{pmatrix}$$

NEUTRINO MIXING Diagonalization of mass matrices:  $m_{\nu}^{\text{diag}} = U_L^{\dagger} m_{\nu} U_R$  and  $m_{\ell}^{\text{diag}} = V_L^{\dagger} m_{\ell} V_R$  with  $U_{L,R} U_{L,R}^{\dagger} = \mathbb{1}$  and  $V_{L,R} V_{L,R}^{\dagger} = \mathbb{1}$ New basis ("flavor basis"  $\rightarrow$  "mass basis")  $\mathcal{L} = \overline{\nu'_L} \, m_\nu \, \nu'_R + \overline{\ell'_L} \, m_\ell \, \ell'_R + \frac{g}{\sqrt{2}} \, W^\alpha \, \overline{\ell'_L} \, \gamma_\alpha \, \nu'_L$  $\overline{\nu_L'} U_L U_L^{\dagger} m_{\nu} U_R U_R^{\dagger} \nu_R' + \overline{\ell_L'} V_L V_L^{\dagger} m_{\ell} V_R V_R^{\dagger} \ell_R' + \frac{g}{\sqrt{2}} W^{\alpha} \overline{\ell_L'} \gamma_{\alpha} V_L V_L^{\dagger} U_L U_L^{\dagger} \nu_L'$  $\equiv \overline{\nu_L} \, m_{\nu}^{\mathrm{diag}} \, \nu_R + \overline{\ell_L} \, m_{\ell}^{\mathrm{diag}} \, \ell_R + \frac{g}{\sqrt{2}} \, W^{lpha} \, \overline{\ell_L} \, \gamma_{lpha} \, U \, \nu_L$ with  $\nu_L \equiv U_L^{\dagger} \nu'_L , \quad \nu_R \equiv U_R^{\dagger} \nu'_R , \quad \ell_L \equiv V_L^{\dagger} \ell'_L , \quad \ell_R \equiv V_R^{\dagger} \ell'_R ,$  $\underline{P}$ ontecorvo- $\underline{M}$ aki- $\underline{N}$ akagata- $\underline{S}$ akawa (PMNS) Mixing Matrix  $U = V_I^{\dagger} U_L$ 

$$\begin{array}{l} \begin{array}{c} \text{Remarks on PMNS} \\ \text{Possible Parametrization:} \\ U = V_L^{\dagger} U_L = \begin{pmatrix} c_{12} \, c_{13} & s_{12} \, c_{13} & s_{13} \, e^{i\delta} \\ -s_{12} \, c_{23} - c_{12} \, s_{23} \, s_{13} \, e^{-i\delta} & c_{12} \, c_{23} - s_{12} \, s_{23} \, s_{13} \, e^{-i\delta} & s_{23} \, c_{13} \\ s_{12} \, s_{23} - c_{12} \, c_{23} \, s_{13} \, e^{-i\delta} & -c_{12} \, s_{23} - s_{11} \, c_{23} \, s_{13} \, e^{-i\delta} & c_{23} \, c_{13} \end{pmatrix} \\ \text{with } c_{ij} = \cos \theta_{ij} \text{ and } s_{ij} = \sin \theta_{ij} \end{array}$$

• 
$$\nu_{\alpha} = U_{\alpha i}^* \nu_i$$
 with  $\alpha = e, \mu, \tau$  (flavor states, interacting)  
and  $i = 1, 2, 3$  (mass states, propagating)

- three angles and one phase (CP violation!!)
- analogous to CKM Matrix for Quarks
- a priori  $\theta_{ij}^{\nu} \neq \theta_{ij}^{q}$  and  $\delta^{\nu} \neq \delta^{q}$
- If  $m_{\nu} = 0$  then  $U = \mathbb{1}$

CONSEQUENCES OF PMNS MATRIX: OSCILLATIONS At time t = 0 flavor state  $|\nu_{\alpha}\rangle$  produced with time evolution

 $|\nu(t)\rangle = U_{\alpha i}^* e^{-iE_i t} |\nu_i\rangle$ 

Amplitude for probability of finding state  $|\nu_{\beta}\rangle$  at later time t

 $\langle \nu_{\beta} | \nu(t) \rangle = U_{\alpha i}^* e^{-iE_i t} \langle \nu_{\beta} | \nu_i \rangle = U_{\beta j} U_{\alpha i}^* e^{-iE_i t} \langle \nu_j | \nu_i \rangle = U_{\beta j} U_{\alpha j}^* e^{-iE_j t}$ 

and probability

 $P(\nu_{\alpha} \to \nu_{\beta}; t) = \left| U_{\beta j} U_{\alpha j}^* e^{-iE_j t} \right|^2$ 

(sum over j!!) with relativistic neutrinos

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$

TWO FLAVOR CASE

$$\nu_{\alpha} = U_{\alpha i}^{*} \nu_{i} \to \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

gives

$$P(\nu_e \to \nu_\mu; t) = \sin^2 2\theta \, \sin^2 \frac{m_2^2 - m_1^2}{4E} t = \sin^2 2\theta \, \sin^2 \frac{\Delta m^2}{4E} t$$
$$= \sin^2 2\theta \, \sin^2 \left(\pi \, \frac{L}{l_{\text{osc}}}\right) = \sin^2 2\theta \, \sin^2 \left(1.27 \, \frac{\Delta m^2}{\text{eV}^2} \, \frac{L}{\text{km}} \, \frac{\text{GeV}}{E}\right)$$



# EXPERIMENTAL CONSTRAINTS

Nature provides mixing angle  $\theta$  and mass–squared difference  $\Delta m^2$ 

Experiments can "choose" energy E and baseline L

$$(\Delta m^2)_{\min} \sim \frac{E}{L}$$

| Source          | Flavor                                                | $E [{\rm GeV}]$         | $L \; [\mathrm{km}]$ | $(\Delta m^2)_{\rm min} \; [{\rm eV}^2]$ |
|-----------------|-------------------------------------------------------|-------------------------|----------------------|------------------------------------------|
| Atmosphere      | $\stackrel{(-)}{\nu_{e}},\;\stackrel{(-)}{\nu_{\mu}}$ | $10^{-1} \dots 10^2$    | $10 \dots 10^{4}$    | $10^{-6}$                                |
| Sun             | $ u_e$                                                | $10^{-3} \dots 10^{-2}$ | $10^{8}$             | $10^{-11}$                               |
| Reactor         | $\overline{ u_e}$                                     | $10^{-4} \dots 10^{-2}$ | $10^{-1}$            | $10^{-3}$                                |
| LBL accelerator | $\stackrel{(-)}{ u_{\mu}}$                            | $10^{-1} \dots 1$       | $10^{2}$             | $1 \dots 10$                             |
| SBL accelerator | $\stackrel{(-)}{ u_{\mu}}$                            | $10^{-1} \dots 1$       | $10^{-1}$            | $10^{-1}$                                |

OSCILLATIONS IN MATTER relativistic limit  $E \gg m_i^2$  $i \partial_t \Psi = \frac{M^2}{2E} \Psi$  with  $\Psi = \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$  and  $M^2 = \begin{pmatrix} m_1^2 & 0 \\ 0 & m_2^2 \end{pmatrix}$ 

in matter coherent forward scattering of  $\nu_e$ described through effective Hamiltonian for CC interactions gives potential for  $\nu_e$  (in flavor basis  $U^T M^2 U!!$ )

 $V = \sqrt{2} G_F N_e$  (neutral, unpolarized matter)

and therefore

$$i \partial_t \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$
$$\longrightarrow \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2} G_F N_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

OSCILLATIONS IN MATTER Diagonalizing (constant  $N_e$ )

$$H = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2} G_F N_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix}$$

gives flavor states in matter:

$$\tan 2\theta_m = \frac{\frac{\Delta m^2}{2E} \sin 2\theta}{\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2} G_F N_e}$$

Maximal mixing  $(\theta_m = \pi/4)$  if

 $2\sqrt{2}G_F N_e E \stackrel{!}{=} \Delta m^2 \cos 2\theta \text{ even if } \theta \text{ is small!!}$ w.l.o.g:  $\Delta m^2 > 0 \Rightarrow$  sensitive to  $\theta < \text{or} > \pi/4$ 

Example core of Sun: 0.5 
$$\left(\frac{E}{\text{MeV}}\right) \stackrel{!}{\simeq} \left(\frac{\Delta m^2}{8 \cdot 10^{-5} \text{ eV}^2}\right) \left(\frac{\cos 2\theta}{0.4}\right)$$

#### MSW EFFECT

 $\nu_A = \nu_e \, \cos \theta_m + \nu_\mu \, \sin \theta_m \qquad \text{with } \tan 2\theta_m = \frac{\frac{\Delta m^2}{2E} \, \sin 2\theta}{\frac{\Delta m^2}{2E} \, \cos 2\theta - \sqrt{2} \, G_F \, N_e}$ 

Sun:  $\nu_e$  pass through a medium with slowly varying ("adiabatically") density (neutrino is propagation eigenstate all along its trajectory, therefore no  $\nu_B \rightarrow \nu_A$ transitions)

High density: $\theta_m \simeq \pi/2$  $\nu_B \simeq -\nu_e$ Resonance: $\theta_m \simeq \pi/4$ Low density: $\theta_m \simeq \theta$  $\nu_B \simeq \nu_\mu \cos \theta - \nu_e \sin \theta \Rightarrow P(\nu_e \rightarrow \nu_\mu) = \cos^2 \theta$ 

condition for adiabaticity is (density variation small over several oscillation lengths)

$$\gamma = \frac{\Delta m^2 \, \sin^2 2\theta}{2E \, \cos 2\theta} \, \frac{1}{\nabla \, \ln N_e} \gg 1$$

happens indeed for found parameters

## THREE FLAVOR OSCILLATIONS

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 2\mathcal{R} \sum_{j>i} U_{\alpha i} U_{\alpha j}^* U_{\beta i}^* U_{\beta j} \left[ 1 - \exp\left\{ i \frac{\Delta m_{ji}^2}{4E} L \right\} \right]$$

• two independent 
$$\Delta m_{ji}^2 = m_j^2 - m_i^2$$
 due to  $\Delta m_{21}^2 = \Delta m_{31}^2 - \Delta m_{32}^2$ 

• simplifies for  $|\Delta m_{21}^2| \ll |\Delta m_{32}^2| \simeq |\Delta m_{31}^2|$  and  $|U_{e3}| \ll 1$ 

• 
$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}})$$
 if there is *CP* violation

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{11} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & s_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



 $4p + 2e^{-} \rightarrow {}^{4}\text{He} + 2\nu_{e} + 26.73 \text{ MeV} \quad \Leftrightarrow 10^{10} \ \nu \text{ cm}^{-2} \text{ s}^{-1}$  $P(\nu_{e} \rightarrow \nu_{e}) \simeq 1 - \sin^{2} 2\theta_{12} \sin^{2} \frac{\Delta m_{21}^{2}}{4E} L$  $(\Delta m_{31}^{2} \gg \Delta m_{21}^{2} \text{ oscillations averaged})$ 

## Solar Neutrinos



Strategies for solar  $\nu$  detection:

- $\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$  (Homestake)
- $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$  (SAGE, GALLEX)
- $\nu_e + e^- \rightarrow \nu_e + e^-$  (Kamiokande, SuperKamiokande)



Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(OP)]





- $\nu_e + d \to p + p + e^- (CC) \Rightarrow \Phi_e = P(\nu_e \to \nu_e) \Phi^{SSM}$
- $\nu_{\alpha} + d \rightarrow p + n + \nu_{\alpha} \text{ (NC)} \Rightarrow \Phi_e + \Phi_{\mu\tau}$
- $\nu_{\alpha} + e^- \rightarrow \nu_{\alpha} + e^-$  (elastic scattering)  $\Rightarrow \Phi_e + 0.16 \Phi_{\mu\tau}$

**TESTING SOLAR NEUTRINOS WITH REACTORS: KAMLAND** Reactor neutrinos from neutron rich fission products

 $n \to p + e^- + \overline{\nu_e}$  with  $E \simeq \text{few MeV}$ 

If  $L \simeq 100$  km:

 $\frac{\Delta m_{\odot}^2}{E} \ L \sim 1 \Rightarrow \text{ solar } \nu \text{ parameters!!}$ 



# Atmospheric Neutrinos



zenith angle  $\cos \theta = 1$   $L \simeq 500$  km zenith angle  $\cos \theta = 0$   $L \simeq 10$  km down-going zenith angle  $\cos \theta = -1$   $L \simeq 10^4$  km up-going





Dip at  $L/E \simeq 500 \text{ km/GeV} \Rightarrow \text{Oscillatory Behavior!!}$ (No  $\nu_{\tau}$  observed yet)

TESTING ATMOSPHERIC NEUTRINOS WITH ACCELERATORS: K2K Proton beam

$$p + X \to \pi^{\pm}, \ K^{\pm} \to \pi^{\pm} \to \overset{(-)}{\nu_{\mu}} \quad \text{with } E \simeq \text{GeV}$$

If  $L \simeq 100$  km:

 $\frac{\Delta m_{\rm A}^2}{E} \ L \sim 1 \Rightarrow \text{ atmospheric } \nu \text{ parameters!!}$ 



Parameters consistent with atmospheric neutrinos!!

# THE THIRD MIXING: SHORT–BASELINE REACTOR NEUTRINOS $E_{\nu} \simeq \text{few MeV} \text{ and } L \simeq 0.1 \text{ km}$ :

 $\frac{\Delta m_{\rm A}^2}{E} L \sim 1 \Rightarrow \text{ atmospheric } \nu \text{ parameters!!}$ with  $P(\nu_e \to \nu_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{32}^2}{4E} L$ 



 $\sin^2 \theta_{13} = |U_{e3}|^2 \le 0.05$ 

#### THE EMERGING PICTURE

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{11} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & s_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- $\theta_{12} \simeq 33^0 \leftrightarrow \text{solar} + \text{KamLAND neutrinos}$
- $\theta_{23} \simeq 45^0 \leftrightarrow \text{atmospheric} + \text{K2K}$  neutrinos
- $\theta_{13} \lesssim 13^0 \leftrightarrow \text{short baseline reactor neutrinos ("CHOOZ angle", <math>|U_{e3}|$ )
- $\delta$  testable in (*three flavor!*) long-baseline oscillations

#### THE EMERGING PICTURE

$$|U| = \begin{pmatrix} 0.73 - 0.88 & 0.47 - 0.67 & 0 - 0.23 \\ 0.17 - 0.57 & 0.37 - 0.73 & 0.56 - 0.84 \\ 0.20 - 0.58 & 0.40 - 0.75 & 0.54 - 0.82 \end{pmatrix} \stackrel{BF}{=} \begin{pmatrix} 0.84 & 0.55 & 0 \\ 0.39 & 0.59 & 0.71 \\ 0.39 & 0.59 & 0.71 \end{pmatrix}$$

Hierarchy of mass squared differences and unknown smallest neutrino mass



#### NEUTRINO MASSES

 $\begin{aligned} |\Delta m_{32}^2| \simeq 2 \cdot 10^{-3} \text{ eV}^2 \Rightarrow 0.04 \text{ eV} \lesssim m_{\text{heaviest}} \lesssim 2.3 \text{ eV} \\ 0 \lesssim m_{\text{smallest}} \lesssim 2.3 \text{ eV} \end{aligned}$ 

normal ordering:

$$m_{\text{smallest}} = m_1$$
  

$$m_2 = \sqrt{\Delta m_{\odot}^2 + m_1^2}$$
  

$$m_3 = \sqrt{\Delta m_A^2 + \Delta m_{\odot}^2 + m_1^2}$$

inverted ordering:

$$m_{\text{smallest}} = m_3$$

$$m_2 = \sqrt{m_3^2 - \Delta m_A^2}$$

$$m_1 = \sqrt{m_2^2 - \Delta m_\odot^2}$$



• 
$$m_3 \simeq \sqrt{\Delta m_A^2} \gg m_2 \simeq \sqrt{\Delta m_\odot^2} \gg m_1$$
: normal hierarchy (NH)

•  $m_2 \simeq \sqrt{\Delta m_A^2} \simeq m_1 \gg m_3$ : inverted hierarchy (IH)

•  $m_3 \simeq m_2 \simeq m_1 \equiv m_0 \gg \sqrt{\Delta m_A^2}$ : quasi-degeneracy (QD)

THE FUTURE: OPEN ISSUES FOR NEUTRINOS OSCILLATIONS Look for *three-flavor effects*:

- precision measurements
  - how maximal is  $\theta_{23}$ ? how small is  $U_{e3}$ ?
- sign of  $\Delta m_{32}^2$  ?

$$\tan 2\theta_m = \frac{\frac{\Delta m^2}{2E} \sin 2\theta}{\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2} G_F N_e} = f(\operatorname{sgn}(\Delta m^2))$$

• is there *CP* violation?

$$\Delta P_{CP} \equiv P(\nu_e \to \nu_\mu) - P(\overline{\nu_e} \to \overline{\nu_\mu})$$

 $= \frac{1}{2} \left( \sin \frac{\Delta m_{21}^2}{2E} + \sin \frac{\Delta m_{32}^2}{2E} - \sin \frac{\Delta m_{31}^2}{2E} \right) \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13} \sin \delta$ 

- Problems:
  - two small parameters:  $\Delta m_{\odot}^2 / \Delta m_A^2 \simeq 1/25$  and  $|U_{e3}| \lesssim 0.2$
  - 8-fold degeneracy for fixed L/E and  $\nu_{e,\mu} \rightarrow \nu_{e,\mu}$  channels

### DEGENERACIES

Expand full 3-flavor oscillation probabilities in terms of  $R = \Delta m_{\odot}^2 / \Delta m_A^2$  and  $|U_{e3}|$ :

$$P(\stackrel{(-)}{\nu_{e}}\rightarrow\stackrel{(-)}{\nu_{\mu}})\simeq\sin^{2}2\theta_{13}\,\sin^{2}\theta_{23}\,\,\frac{\sin^{2}(1-\hat{A})\Delta}{(1-\hat{A})^{2}}$$

$$\pm\sin\delta\cdot\sin2\theta_{13}\,R\,\sin2\theta_{12}\,\cos\theta_{13}\,\sin2\theta_{23}\sin\Delta\frac{\sin\hat{A}\Delta\,\sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$$

$$+\cos\delta\cdot\sin2\theta_{13}\,R\,\sin2\theta_{12}\,\cos\theta_{13}\,\sin2\theta_{23}\,\cos\Delta\frac{\sin\hat{A}\Delta\,\sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$$

$$+R^{2}\,\sin^{2}2\theta_{12}\,\cos^{2}\theta_{23}\frac{\sin^{2}\hat{A}\Delta}{\hat{A}^{2}}\text{ with }\hat{A}=2VE/\Delta m_{A}^{2}\text{ and }\Delta=\Delta m_{A}^{2}$$

- $\theta_{23} \leftrightarrow \pi/2 \theta_{23}$  degeneracy
- $\theta_{13}$ - $\delta$  degeneracy
- $\delta$ -sgn $(\Delta m_{\rm A}^2)$  degeneracy

Solutions: more channels, different L/E, high precision,...

# LONG-BASELINE NEUTRINOS

|             | $\Delta m_{ m A}^2$ | $\sin^2 \theta_{23}$ |
|-------------|---------------------|----------------------|
| current     | 88 %                | 79%                  |
| MINOS+CNGS  | 26%                 | 78%                  |
| T2K         | 12%                 | 46%                  |
| Nova        | 25%                 | 86%                  |
| Combination | 9%                  | 42%                  |



#### THE FAR FAR FUTURE IN A GALAXY FAR FAR AWAY

 $\beta \text{-beams:} \quad \begin{array}{c} {}^{18}\text{Ne} \to {}^{18}\text{Fe} + e^+ + \nu_e \\ {}^{6}\text{He} \to {}^{6}\text{Li} + e^- + \overline{\nu_e} \end{array}$ 

and/or "neutrino factories":  $\mu^- \rightarrow e^- + \overline{\nu_e} + \nu_{\mu}$ 

flux known exactly; no background



#### TYPICAL TIME SCALE


#### FUTURE OF SOLAR NEUTRINO (PARAMETER)S low energy neutrinos (<sup>7</sup>Be, pep, pp) from the Sun (Borexino, LENA, pp...) • 1.0 Vacuum - Matter transition 0.8 $\cos^4 \Theta_{13} (1 - \frac{1}{2} \sin^2 2 \Theta_{12})$ 0.6 P 0.4 $\cos^4\theta_{13}\sin^2\theta_{12}$ 0.2 $2^{3/2}G_F cos^2 \theta_{13}n_e E_{v}$ B = $\Delta m_{21}^2$ 0.0 $\boldsymbol{E}$ • reactor; located at SPMIN $(P(\nu_e \rightarrow \nu_e) \simeq 1 - \sin^2 2\theta_{12})$ 0.32 0.3 0.28 $\sin^2 \theta_{12}$ 0.26 0.24 $\Delta m_{21}^2$ (true)=8.3x10<sup>-5</sup>eV<sup>2</sup> $\Delta m_{21}^{2}$ (true)=8.0x10<sup>-</sup> 0.22 0.32 3σ $2\sigma$ 0.3 90% C I 0.28 $\sin^2 \theta_{12}$ 0.26 0.24 $\Delta m_{21}^{2}$ (true)=9.5x10<sup>-5</sup>eV<sup>2</sup> $(true) = 7.2 \times 10^{-5} eV^{2}$ 0.22 . . . 40 50 60 70 80 90 10040 50 60 70 80 90 100 L (km) L (km)

# THE BLACK SHEEP: LS(N)DShort baseline accelerator neutrinos detected via $\overline{\nu_e} + p \to n + e^+$ interpreted as $\overline{\nu_{\mu}} \to \overline{\nu_e}$ oscillations!!



 $\Delta m^2 \simeq \text{eV}^2 !! \Rightarrow \text{since } N_{\nu}(m_{\nu} \leq 45 \text{ GeV}) = 3$  $\Rightarrow \text{ fourth light neutrino: "sterile neutrino" } \nu_s !!!$ 

- Problems with solar/atmospheric neutrino experiments (2 or more  $\nu_s$ ?)
- Currently tested at MiniBooNE (early 2006?)



A DIFFERENT MASS TERM FOR NEUTRINOS

Till now: Dirac mass term for two *independent* neutrino fields  $\nu_L$  and  $\nu_R$  (just as for quarks and charged leptons)

$$\mathcal{L}_D = \frac{m_D \sqrt{2}}{v} \overline{\nu_L} \, \Phi^c \, \nu_R \xrightarrow{SSB} m_D \, \overline{\nu_L} \, \nu_R + h.c.$$

New field  $\nu_R$  is a SM singlet!  $\Rightarrow$ 

 $\mathcal{L}_M = \frac{1}{2} M_R \overline{(\nu_R)^c} \nu_R + h.c.$  "Majorana mass term" will appear!

$$\psi \to \psi^c = C \overline{\psi}^T$$
 and  $\overline{\psi^c} = \psi^T C^T = -\psi^T C$ 

Majorana mass  $M_R$  has nothing to do with SM or Higgs mechanism

 $\Rightarrow M_R \gg m_D \lesssim m_{\rm top}$ 

We even can assume that

 $M_R = M_{\rm GUT} \simeq 10^{16} {\rm GeV}$ 

Total mass term is sum of Dirac and Majorana

## DIRAC + MAJORANA MASSES Properties:

 $\overline{\nu_R^c} M_R \nu_R = \overline{\nu_R^c}_{\alpha} (M_R)_{\alpha\beta} (\nu_R)_{\beta} = (\nu_R^T)_{\alpha} C^T (M_R)_{\alpha\beta} (\nu_R)_{\beta}$  $= -(\nu_R)_{\beta}^T (M_R)_{\alpha\beta} C (\nu_R)_{\alpha} = \overline{\nu_R^c}_{\beta} (M_R)_{\alpha\beta} (\nu_R)_{\alpha} = \overline{\nu_R^c}_{\alpha} (M_R)_{\beta\alpha} (\nu_R)_{\beta}$ 

 $= \overline{\nu_R^c} \, M_R^T \, \nu_R$ 

 $\Rightarrow$  Majorana mass matrices are symmetric!

Moreover:  $\overline{\nu_L} m_D \nu_R = \overline{\nu_R^c} m_D^T \nu_L^c$ 

Put everything together:

$$\mathcal{L} = \mathcal{L}_D + \mathcal{L}_M = m_D \,\overline{\nu_L} \,\nu_R + \frac{1}{2} \,M_R \,\overline{(\nu_R)^c} \,\nu_R$$
$$= \frac{1}{2} \,\overline{n_L^c} \begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix} n_L + h.c. \text{ with } n_L = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$$

 $\Rightarrow$  Most general mass term is a Majorana mass term!!

$$\begin{split} & \textbf{SEE-SAW MECHANISM} \\ & \text{Diagonalize} \\ & \frac{1}{2} \overline{n_L^c} \begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix} n_L \text{ with } n_L = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \\ & \text{with } M_R \gg m_D \Rightarrow \text{ is almost diagonal} \\ & \Rightarrow \text{ Ansatz:} \\ & U^T \begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix} U = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \text{ with } U \simeq \begin{pmatrix} 1 & \rho \\ -\rho^\dagger & 1 \end{pmatrix} + \mathcal{O}(\rho^2) \\ & \text{ Inserting gives } \rho^* \simeq m_D^T M_R^{-1} \text{ and} \\ & m_1 \simeq -m_D^T M_R^{-1} m_D + \mathcal{O}(\rho^2) \quad \text{ three flavor neutrinos } \nu_{e,\mu,\tau} \\ & m_2 \simeq M_R + \mathcal{O}(\rho) \quad \text{ additional heavy neutrinos } N_{1,2,3} \\ & m_\nu \simeq m_D^2/M_R \simeq v^2/(10^{15} \text{ GeV}) \simeq 0.01 \text{ eV} \simeq \sqrt{\Delta m_A^2} \ll m_D \end{split}$$

explains why neutrinos are so much lighter than quarks and charged leptons!!



$$\mathcal{L} = \overline{(\nu_L)^c} \, m_\nu \, \nu_L = \overline{(\nu^c)_R} \, m_\nu \, \nu_L \sim (\nu_L)^T \, m_\nu \, \nu_L$$

- Mass term couples left–handed to right-handed field
- if independent: Dirac mass term
- if dependent: Majorana mass term
- Then left– and right–handed  $\nu$  no longer independent:

 $\nu = \nu_L + \nu_R = \nu_L + (\nu_L)^c \Leftrightarrow \nu^c = \nu$  "Majorana particle"

- Mass term  $\nu^T \nu$  not invariant under  $\nu \to e^{iL} \nu$  (cf. with Dirac term  $\overline{\nu} \nu$ ) Lepton number violation!!
- Mass term  $\nu^T \nu \Rightarrow$  two additional phases in PMNS matrix
- (Phenomenological implications of heavy Majoranas  $\rightarrow$  later)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & s_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha} & 0 \\ 0 & 0 & e^{i\beta} \end{pmatrix}$$

•  $\theta_{12} \simeq 33^0 \leftrightarrow \text{solar} + \text{KamLAND neutrinos}$ 

- $\theta_{23} \simeq 45^0 \leftrightarrow \text{atmospheric} + \text{K2K}$  neutrinos
- $\theta_{13} \lesssim 13^0 \leftrightarrow \text{short baseline reactor neutrinos ("CHOOZ angle", <math>|U_{e3}|$ )
- $\delta$  testable in (*three flavor!*) long-baseline oscillations
- $\alpha$ ,  $\beta$  connected to Majorana nature of neutrinos  $\Leftrightarrow$  only observable effects in Lepton Number Violating Processes!!
- alternative: no Majorana phases but
   m<sub>1</sub> → m<sub>1</sub>, m<sub>2</sub> → m<sub>2</sub> e<sup>2iα</sup> and m<sub>3</sub> → m<sub>3</sub> e<sup>2iβ</sup>
   connected to CP parities of the ν<sub>i</sub>: CP conservation if α, β = 0, π/2, π

# Two POPULAR CASES $\theta_{23} \simeq 45^0$ and $\theta_{12} \simeq 30^0 \leftrightarrow$ "Bi–large Mixing"

•  $\sin^2 \theta_{12} = 1/3$ : "Tri-bimaximal Mixing"

$$U = U_{\text{tribimax}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix} P$$

•  $\sin^2 \theta_{12} = 1/2$ : "Bimaximal Mixing"

$$U = U_{\text{bimax}} = \begin{pmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \sqrt{\frac{1}{2}}\\ \frac{1}{2} & -\frac{1}{2} & \sqrt{\frac{1}{2}} \end{pmatrix} P$$

With  $\theta_{13} = 0$  no *CP* violation in neutrino oscillations...

## "Predicting" $U_{e3}$

Recall charged lepton contribution to PMNS matrix

 $U = U_{\ell}^{\dagger} U_{\nu}$ 

Assume that  $U_{\nu} = U_{\text{bimax}}$  is bimaximal and "quark–lepton symmetry"  $U_{\ell} \simeq V_{\text{CKM}}$ 

$$U_{\ell} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & B\lambda^3 \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ (A - B)\lambda^3 & -A\lambda^2 & 1 \end{pmatrix} \text{ with } \lambda \stackrel{?}{\simeq} 0.22$$

multiply  $U_{\ell}^{\dagger}$  from the left to  $U_{\text{bimax}}$  and obtain the observables:

$$\begin{aligned}
\tan^2 \theta_{12} \simeq 1 - 2\sqrt{2} \cos \phi \lambda \\
|U_{e3}| \simeq \frac{\lambda}{\sqrt{2}} \\
\Delta P_{CP} \propto \sin \phi
\end{aligned} \right\} \Rightarrow \tan^2 \theta_{12} \simeq 1 - 4 \cos \phi |U_{e3}| \stackrel{!}{\simeq} 0.43$$

 $\Rightarrow |U_{e3}| \simeq 0.16 \Rightarrow \lambda \simeq 0.22 \simeq \theta_C$  and large *CP* violation

Structure of the Mixing matrix — Quarks vs. Leptons

$$V_{\text{CKM}} \simeq \begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda & A \lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2} \lambda^2 & A \lambda^2 \\ A \lambda^3 (1 - \rho + i\eta) & -A \lambda^2 & 1 \end{pmatrix} = \mathbb{1} + \mathcal{O}(\lambda)$$
$$U_{\text{PMNS}} \simeq \begin{pmatrix} \sqrt{\frac{1}{2}} (1 + \lambda) & \sqrt{\frac{1}{2}} (1 - \lambda) & A_{\nu} \lambda \\ -\frac{1}{2} (1 - (1 - A_{\nu} e^{i\delta}) \lambda) & \frac{1}{2} (1 + (1 - A_{\nu} e^{i\delta}) \lambda) & \sqrt{\frac{1}{2}} (1 - B_{\nu} \lambda^2) e^{i\delta} \\ \frac{1}{2} (1 - (1 + A_{\nu} e^{i\delta}) \lambda) & -\frac{1}{2} (1 + (1 + A_{\nu} e^{i\delta}) \lambda) & \sqrt{\frac{1}{2}} (1 + B_{\nu} \lambda^2) e^{i\delta} \end{pmatrix}$$
$$= U_{\text{bimax}} + \mathcal{O}(\lambda)$$

"Quark–Lepton–Complementarity":  $\theta_{\odot} + \theta_C = \pi/4$ Linked to Quark–Lepton–Symmetry??

# CKM IN PMNS? Numerology:

 $\theta_{12} + \theta_C = \sin^{-1} \sqrt{0.3} + \sin^{-1} 0.22 \simeq \pi/4$ "Quark-Lepton-Complementarity" (QLC) Possible Realization:  $U_{\nu} = U_{\text{bimax}}$   $U_{\ell} = V_{\text{CKM}}$   $\Rightarrow U = V_{\text{CKM}}^{\dagger} U_{\nu} \text{ (approximate QLC)}$ 

 $m_D = m_{\rm up}$  from SO(10)

Go to basis in which  $m_{\rm up}$  is diagonal, i.e.,  $U_{\rm up} = 1$ from  $U_{\rm up} = 1$  it follows that  $U_{\rm down} = U_{\ell}$ get bimaximal  $U_{\nu}$  from special structure of  $M_R$  via see–saw THE NEUTRINO MASS MATRIX Assume  $\theta_{23} = \pi/4$  and  $\theta_{13} = |U_{e3}| = 0$ :

$$U = U(\theta_{23} = \pi/4, \ \theta_{13} = 0) = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0\\ -\frac{\sin \theta_{12}}{\sqrt{2}} & \frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$$
  
and  $m_{\nu} = U \ m_{\nu}^{\text{diag}} U^{T} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(D+E) & \frac{1}{2}(D-E) \\ \cdot & \cdot & \frac{1}{2}(D+E) \end{pmatrix}$  with  
 $A = m_{1} \cos^{2} \theta_{12} + e^{2i\alpha} m_{2} \sin^{2} \theta_{12}$   
 $B = \frac{\sin \theta_{12} \cos \theta_{12}}{\sqrt{2}} (e^{2i\alpha} m_{2} - m_{1})$   
 $D = (m_{1} \sin^{2} \theta_{12} + e^{2i\alpha} m_{2} \cos^{2} \theta_{12})$   
 $E = e^{2i\beta} m_{3}$   
 $\mu - \tau \ \text{Symmetry!!}$ 

The neutrino mass matrix if  $heta_{12}=\pi/4$ 

 $\mu\!-\!\tau$  symmetric mass matrix simplifies further for certain mass hierarchies

• NH: 
$$m_3 \simeq \sqrt{\Delta m_A^2}$$
,  $m_2 \simeq \sqrt{\Delta m_\odot^2} \simeq \sqrt{\Delta m_A^2} \sqrt{R}$  and  $m_1 \simeq 0$ :

$$m_{\nu} \simeq \frac{\sqrt{\Delta m_{A}^{2}}}{2} \begin{pmatrix} \sqrt{R} & \sqrt{\frac{R}{2}} & \sqrt{\frac{R}{2}} \\ \cdot & e^{2i(\beta-\alpha)} & -e^{2i(\beta-\alpha)} \\ \cdot & \cdot & e^{2i(\beta-\alpha)} \end{pmatrix} \xrightarrow{R \simeq 0} \frac{\sqrt{\Delta m_{A}^{2}}}{2} \begin{pmatrix} 0 & 0 & 0 \\ \cdot & 1 & -1 \\ \cdot & \cdot & 1 \end{pmatrix}$$

conserves  $L_e$ 

• IH: 
$$m_2 \simeq m_1 \simeq \sqrt{\Delta m_A^2}$$
 and  $m_3 \simeq 0$ :

$$m_{\nu} \simeq \frac{\sqrt{\Delta m_{A}^{2}}}{2} \begin{pmatrix} 1+e^{2i\alpha} & \sqrt{\frac{1}{2}}(e^{2i\alpha}-1) & \sqrt{\frac{1}{2}}(e^{2i\alpha}-1) \\ \cdot & e^{i\alpha}\cos\alpha & e^{i\alpha}\cos\alpha \\ \cdot & \cdot & e^{i\alpha}\cos\alpha \end{pmatrix} \xrightarrow{\alpha=\pi/2} \frac{\sqrt{\Delta m_{A}^{2}}}{2} \begin{pmatrix} 0 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{pmatrix}$$

conserves  $L_e - L_\mu - L_\tau$ 

THE NEUTRINO MASS MATRIX IF 
$$\theta_{12} = \pi/4$$
  
QD:  $m_3 \simeq m_2 \simeq m_1 \equiv m_0$ :  
 $m_{\nu} \simeq \frac{m_0}{2} \begin{pmatrix} 1 + e^{2i\alpha} & \sqrt{\frac{1}{2}}(e^{2i\alpha} - 1) & \sqrt{\frac{1}{2}}(e^{2i\alpha} - 1) \\ & \cdot & \frac{1}{2}\left(1 + e^{2i\alpha} + 2e^{2i\beta}\right) & \frac{1}{2}\left(1 + e^{2i\alpha} - 2e^{2i\beta}\right) \\ & \cdot & \cdot & \frac{1}{2}\left(1 + e^{2i\alpha} + 2e^{2i\beta}\right) \end{pmatrix}$ 

$$\alpha = \beta = 0 \quad m_0 \begin{pmatrix} 1 & 0 & 0 \\ & \cdot & 1 & 0 \\ & \cdot & \cdot & 1 \end{pmatrix} \quad \text{unit matrix}$$
 $\alpha = 0, \ \beta = \pi/2 \quad m_0 \begin{pmatrix} 1 & 0 & 0 \\ & \cdot & 0 & 1 \\ & \cdot & \cdot & 0 \end{pmatrix} \quad \text{conserves } L_{\mu} - L_{\tau}$ 

LEPTON-NUMBER VIOLATION: NEUTRINOLESS DOUBLE BETA DECAY Mass term  $\nu^T \nu$  not invariant under  $\nu \rightarrow e^{iL} \nu \Rightarrow$  Lepton number violation!! everyone's favorite process: Neutrinoless Double Beta Decay  $(0\nu\beta\beta)$ 

 $(A, Z) \to (A, Z+2) + 2e^{-} \Delta L = 2$ 



## NEUTRINOLESS DOUBLE BETA DECAY



- only works when  $\nu = \nu^c$
- only works when  $m_{\nu} \neq 0$
- spin flip  $\Rightarrow$  Amplitude  $\propto m_{\nu}/E$

Amplitude proportional to coherent sum:

$$\langle m \rangle \equiv \left| \sum U_{ei}^2 m_i \right| = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{2i\alpha} + s_{13}^2 m_3 e^{2i\beta} \right|$$
$$= f \left( \theta_{12}, m_i, |U_{e3}|, \operatorname{sgn}(m_3^2 - m_2^2), \alpha, \beta \right)$$
"Effective mass"  $\langle m \rangle$ 

## NEUTRINOLESS DOUBLE BETA DECAY



$$\Gamma(0\nu\beta\beta) = \langle m \rangle^2 \ G(E_0, Z) \ \left| \mathcal{M}(A, Z) \right|^2$$

- $\langle m \rangle$ : effective mass: neutrino physics
- $G(E_0, Z)$ : phase space factor: known
- $\mathcal{M}(A, Z)$ : Nuclear Matrix Element: uncertainty of factor  $\mathcal{O}(1)$



Best current limit: Heidelberg–Moscow (<sup>76</sup>Ge)  $T_{1/2} \ge 1.9 \cdot 10^{25} \ y \Rightarrow \langle m \rangle \lesssim (0.3 \dots 1.2) \text{ eV}$ 

(part of HM claims evidence corresponding to  $\langle m \rangle \simeq (0.1 \dots 0.9) \text{ eV}$ )

## NEUTRINOLESS DOUBLE BETA DECAY

|            |                     |                              | Sensitivity to       | Limit on                        |
|------------|---------------------|------------------------------|----------------------|---------------------------------|
| Experiment | Source              | Detector Description         | $T_{1/2}^{0\nu}$ (y) | $\langle m \rangle ~({\rm eV})$ |
| COBRA      | $^{130}\mathrm{Te}$ | CdTe semiconductors          | $1 \times 10^{24}$   | 0.71                            |
| DCBA       | $^{150}\mathrm{Nd}$ | <sup>enr</sup> Nd layers     | $2 \times 10^{25}$   | 0.035                           |
| NEMO 3     | $^{100}\mathrm{Mo}$ | several $0 uetaeta$ isotopes | $4 \times 10^{24}$   | 0.56                            |
| CAMEO      | $^{116}\mathrm{Cd}$ | $CdWO_4$ crystals            | $> 10^{26}$          | 0.069                           |
| CANDLES    | $^{48}$ Ca          | $CaF_2$ crystals             | $1 \times 10^{26}$   | (0.081)                         |
| CUORE      | $^{130}\mathrm{Te}$ | $TeO_2$ bolometers           | $2 \times 10^{26}$   | 0.027                           |
| EXO        | $^{136}$ Xe         | $^{\rm enr}$ Xe TPC          | $8 \times 10^{26}$   | 0.052                           |
| GEM        | $^{76}\mathrm{Ge}$  | $^{\rm enr}$ Ge diodes       | $7 \times 10^{27}$   | 0.018                           |
| GERDA      | $^{76}\mathrm{Ge}$  | $^{76}$ Ge in liquid Ar/N    | $2 \times 10^{26}$   | 0.02                            |
| Majorana   | $^{76}\mathrm{Ge}$  | <sup>enr</sup> Ge diodes     | $3 \times 10^{27}$   | 0.025                           |
| MOON       | $^{100}\mathrm{Mo}$ | $^{nat}Mo$ sheets            | $1 \times 10^{27}$   | 0.036                           |
| Xe         | $^{136}$ Xe         | $^{\rm enr}{ m Xe}$          | $5 \times 10^{26}$   | 0.066                           |
| XMASS      | $^{136}$ Xe         | liq. Xe                      | $3 \times 10^{26}$   | 0.086                           |

 $\Rightarrow \text{In} \simeq 10 \text{ years } \langle m \rangle \simeq \sqrt{\Delta m_{\text{A}}^2} \text{ probed}$  $\sqrt{\Delta m_{\text{A}}^2} \leftrightarrow 1 \text{ t target mass}$ 

MASS HIERARCHIES AND EFFECTIVE MASS  
• NH: 
$$m_3 \simeq \sqrt{\Delta m_A^2}$$
,  $m_2 \simeq \sqrt{\Delta m_\odot^2} \simeq \sqrt{\Delta m_A^2} \sqrt{R}$  and  $m_1 \simeq 0$ :  
 $\langle m \rangle^{\rm NH} \simeq \left| \sin^2 \theta_{12} \sqrt{\Delta m_\odot^2} + \sin^2 \theta_{13} \sqrt{\Delta m_A^2} e^{2i(\alpha - \beta)} \right| \lesssim 5 \cdot 10^{-3} \text{ eV}$   
or  $\langle m \rangle^{\rm NH} = \mathcal{O}(\sqrt{\Delta m_\odot^2})$ 

• IH: 
$$m_2 \simeq m_1 \simeq \sqrt{\Delta m_A^2}$$
 and  $m_3 \simeq 0$ :  
 $\langle m \rangle^{\text{IH}} \simeq \sqrt{\Delta m_A^2} \left( 1 - \sin^2 2\theta_{12} \sin^2 \alpha \right) \simeq (0.029 \dots 0.055) \text{ eV}$   
or  $\sqrt{\Delta m_A^2} \cos 2\theta_{12} \le \langle m \rangle^{\text{IH}} \le \sqrt{\Delta m_A^2} \text{ or } \langle m \rangle^{\text{IH}} = \mathcal{O}(\sqrt{\Delta m_A^2})$   
 $\Rightarrow \langle m \rangle_{\text{MIN}}^{\text{IH}} > \langle m \rangle_{\text{MAX}}^{\text{NH}} \Rightarrow \text{ Distinguish NH from IH!!!}$ 

• QD: 
$$m_3 \simeq m_2 \simeq m_1 \equiv m_0$$
:  
 $\langle m \rangle^{\text{QD}} \simeq m_0 \left( 1 - \sin^2 2\theta_{12} \sin^2 \alpha \right) \simeq (0.65 \dots 1) m_0$   
or  $m_0 \cos 2\theta_{12} \leq \langle m \rangle^{\text{QD}} \leq m_0$  or  $\langle m \rangle^{\text{QD}} = \mathcal{O}(m_0)$ 



NH vs. IH works with NME uncertainty  $\leq 2$  and  $m_{\text{smallest}} \leq 0.01 \text{ eV}$ 

## What's more to $0\nu\beta\beta$ ?

• Mass scale: consider QD spectrum

$$m_0 \le \frac{1 + \tan^2 \theta_{12}}{1 - \tan^2 \theta_{12} - 2 |U_{e3}|^2} \langle m \rangle^{\exp} \lesssim 5 \text{ eV}$$

comparable to current  ${}^{3}H$  limit in the future

• Majorana phases: consider IH spectrum

$$\sin^2 \alpha = \left(1 - \frac{\langle m \rangle}{\sqrt{\Delta m_A^2} \left(1 - |U_{e3}|^2\right)}\right)^2 \frac{1}{\sin^2 2\theta_{12}}$$

extremely challenging unless NME uncertainty  $\lesssim 1.5$ 



 $2n \rightarrow 2p + 2e^- \Rightarrow 2d \rightarrow 2u + 2e^- \Rightarrow 0 \rightarrow u\bar{d} + u\bar{d} + 2e^-$ 

- SUSY
- Higgs triplets
- Right–handed interactions
- Majorons

 $\Rightarrow$  limits on masses and couplings



• Exotic decays, e.g.,

BR
$$(K^+ \to \pi^- \mu^+ \mu^+) \sim 10^{-30} \ (m_{\mu\mu}/\text{eV})^2 \text{ with } m_{\mu\mu} = \left| \sum U_{\mu i}^2 m_i \right|$$

• processes at accelerators ( $\nu N$  scattering,  $\nu$ -fac, HERA "isolated leptons")

BR, 
$$\Gamma$$
,  $\sigma \propto \frac{m^2}{(q^2 - m^2)^2} \simeq \begin{cases} m_i^2 & q^2 \gg m_i^2 \\ m_i^{-2} & q^2 \ll m_i^2 \end{cases}$   
Can we still identify  $m_{\nu}$ ?

| A simple $U(1)$ for $m_{\nu}$ ? |                                                                   |                                                                                                  |  |  |  |
|---------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| L'                              | matrix                                                            | extra                                                                                            |  |  |  |
| $L_e$<br>Normal Hierarchy       |                                                                   | $R = \frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2} \simeq  U_{e3} ^2$                            |  |  |  |
|                                 | $\cdot a b$                                                       | $\tan^2 \theta_{\rm atm} \simeq 1 +  U_{e3}  \simeq 1 + \sqrt{R}$                                |  |  |  |
|                                 | $\left( \begin{array}{ccc} \cdot & \cdot & d \end{array} \right)$ | $\langle m  angle \simeq \sqrt{\Delta m_{\rm A}^2}   U_{e3} ^2 \simeq \sqrt{\Delta m_{\odot}^2}$ |  |  |  |
| T T T                           | $\left(\begin{array}{ccc} 0 & a & b \end{array}\right)$           | requires $U_{\ell}$ : ideal for QLC                                                              |  |  |  |
| $L_e - L_\mu - L_\tau$          | $\cdot 0 0$                                                       | $\tan^2 \theta_{12} \simeq 1 - 4 \left  U_{e3} \right  \simeq 1 - 2\sqrt{2} \sin \theta_{\rm C}$ |  |  |  |
| Inverted Hierarchy              |                                                                   | $\langle m  angle \simeq \sqrt{\Delta m_{ m A}^2}$                                               |  |  |  |
| т т                             | $\left(\begin{array}{ccc}a & 0 & 0\end{array}\right)$             | in leading order:                                                                                |  |  |  |
| $L_{\mu} - L_{\tau}$            | $\cdot 0 b$                                                       | $U_{e3} = 0$ and $\theta_{23} = \pi/4$                                                           |  |  |  |
| quasi–aegenerate $\nu$ s        |                                                                   | $\langle m  angle \simeq m_0$                                                                    |  |  |  |

 $\Rightarrow$  Let  $\langle m \rangle$  decide!

| NORMAL HIERARCHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Matrix $m_{\nu}/m_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\operatorname{comments}$                               | correlations                                                                                                                                                                                     |  |  |
| $\left(\begin{array}{cccc} a \ \epsilon^2 & b \ \epsilon & d \ \epsilon \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | simple $U(1)$ ,<br>broken $L_e$<br>sequential dominance | $\langle m \rangle = c_1 \sqrt{\Delta m_A^2}  U_{e3} ^2$<br>$ U_{e3}  = c_2 \sqrt{R}, \ \theta_{23} = \frac{\pi}{4} - c_3 \sqrt{R}$                                                              |  |  |
| $\left(\begin{array}{cccc} a  \epsilon^2 & b  \epsilon & d  \epsilon \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $     | $\mu 	au$ symmetry<br>broken in <i>e</i> sector         | $\langle m \rangle = c_1 \sqrt{\Delta m_A^2}  U_{e3} ^2$<br>$ U_{e3}  = c_2 \sqrt{R}, \ \theta_{23} = \frac{\pi}{4} - c_3 R$                                                                     |  |  |
| $\left(\begin{array}{cccc} a \ \epsilon^2 & b \ \epsilon & b \ \epsilon \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ $ | $\mu	au$ symmetry<br>broken in $\mu	au$ sector          | $ \begin{array}{l} \langle m \rangle = c_1 \; \sqrt{\Delta m_A^2} \;  U_{e3}  \\  U_{e3}  = c_2 \; R, \; \theta_{23} = \frac{\pi}{4} - c_3 \; \sqrt{R} \end{array} $                             |  |  |
| $\left( egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 zeros also $m_{ee}=m_{e	au}=0$                        | $\begin{split} \langle m \rangle &= 0 \\  U_{e3}  &= \sqrt{\frac{R}{\cos 2\theta_{12}}} \frac{\sin 2\theta_{12}}{2 \tan \theta_{23}} \\ \theta_{23} &= \frac{\pi}{4} - c_1 \sqrt{R} \end{split}$ |  |  |
| $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | perturbed $m_ u^0$                                      | $ \langle m \rangle = \frac{\sqrt{\Delta m_A^2}}{2} (1 + c_1  U_{e3} ) \\  U_{e3}  = c_2 \sqrt{R}, \ \theta_{23} = \frac{\pi}{4} - c_3 \sqrt{R} $                                                |  |  |

## INVERTED HIERARCHY

| Matrix $m_{\nu}/m_0$                                                                                                                                                                                            | comments                                                           | correlations                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\left(\begin{array}{ccccc} 1+a\ \epsilon & b\ \epsilon & d\ \epsilon \\ & & \\ & & \\ & & \frac{1}{2}+f\ \epsilon & \frac{1}{2}+g\ \epsilon \\ & & \\ & & \\ & & & \frac{1}{2}+h\ \epsilon \end{array}\right)$ | perturbed $m_ u^0$                                                 | $\begin{split} \langle m \rangle &= \sqrt{\Delta m_{\rm A}^2}  (1 + c_1 \;  U_{e3} ) \\  U_{e3}  &= c_2 \; R, \; \theta_{23} = \frac{\pi}{4} - c_3 \; R \end{split}$                |
| $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                      | broken $L_e - L_\mu - L_	au$ and $U_\ell \sim V_{ m CKM}$          | $ \langle m \rangle = \sqrt{\Delta m_A^2} \left  \cos 2\theta_{12} + 4i / \sin^2 \theta_{23} J_{CP} \right  $ $ \tan^2 \theta_{12} = 1 - 4 \cos \delta  \cot \theta_{23}  U_{e3}  $ |
| $\left(\begin{array}{cccc} a & \sqrt{2}b\cos\theta & \sqrt{2}b\sin\theta \\ & & \\ \cdot & d(1+\cos\theta) & d\sin\theta \\ & & \\ \cdot & \cdot & d(1-\cos\theta) \end{array}\right)$                          | $2~N~{ m see-saw}$<br>$L_e~-~L_\mu~-~L_	au$ $strongly~{ m broken}$ | $\begin{array}{l} \sqrt{\Delta m_{\rm A}^2} \cos 2\theta_{12} \leq \langle m \rangle \leq \sqrt{\Delta m_{\rm A}^2} \\ U_{e3} = 0, \ \theta_{23} \ {\rm large} \end{array}$         |

# QUASI-DEGENERACY

| Matrix $m_{\nu}/m_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\operatorname{comments}$                                                                                   | correlations                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\left(\begin{array}{cccc} 1 & 0 & 0 \\ & & & \\ & & & \\ & & 1 & 0 \\ & & & \\ & & & \\ & & & \\ & & & 1 \end{array}\right) + \begin{array}{c} \text{sequential} \\ \text{dominance} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | type II see-saw<br>upgrade                                                                                  | $\begin{array}{l} \langle m \rangle \simeq m_{0} \\  U_{e3}  = c_{1} \ \sqrt{R}, \ \theta_{23} = \frac{\pi}{4} - c_{2} \ \sqrt{R} \\ \text{phases shrink with } m_{0} \end{array}$                                                                                                                                                     |
| $\left(\begin{array}{cccc} 1 & 0 & 0 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & 0 \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $L_{\mu} - L_{	au}$ plus perturbations                                                                      | $ \begin{split} \langle m \rangle &= m_0 ~(1/\sqrt{2} + c_1 ~ U_{e3} ) \\  U_{e3}  &= c_2 ~\Delta m_{\rm A}^2 / m_0^2 \lesssim 0.1 \\ \theta_{23} &= \pi/4 - c_3 ~ U_{e3}  \end{split} $                                                                                                                                               |
| $\left(\begin{array}{cccc} a & \epsilon & 0 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | also $m_{e\mu} = m_{\tau\tau} = 0$<br>and $m_{e\mu} = m_{\mu\mu} = 0$<br>and $m_{e\tau} = m_{\tau\tau} = 0$ | $ \begin{split} \langle m \rangle &\simeq m_0 \simeq \sqrt{\frac{\Delta m_A^2 \tan^4 \theta_{23}}{1 - \tan^4 \theta_{23}}} \\ R &\simeq \frac{1 + \tan^2 \theta_{12}}{\tan \theta_{12}} \tan 2\theta_{23} \operatorname{Re} U_{e3} \\ &\Rightarrow \theta_{23} \neq \pi/4 \text{ and } \operatorname{Re} U_{e3} \simeq 0 \end{split} $ |
| $\left[\begin{array}{ccccc} 1 & 1 & 1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | $S(3)_L \times S(3)_R$ democracy                                                                            | $\langle m \rangle \simeq m_0$ , requires $r_{\nu} \ll 1$<br>$ U_{e3}  \simeq \sqrt{m_e/m_{\mu}}$ , $\theta_{23}$ large depends on $m_{e,\mu,\tau}$ and breaking                                                                                                                                                                       |
| $\left[ egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | anarchy                                                                                                     | $ U_{e3} $ close to upper bound,<br>$	heta_{23}$ close to bound<br>extreme hierarchy unlikely                                                                                                                                                                                                                                          |

## BARYOGENESIS

Baryon Asymmetry of the Universe (BAU)

$$Y_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq (6.5^{+0.4}_{-0.3}) \cdot 10^{-10} \text{ (WMAP)}$$

Three necessary (Sakharov–)conditions to generate it

- 1. Baryon number violation  $(Y_B)$
- 2. C and CP violation  $(\Gamma(B \nearrow) \neq \Gamma(B \searrow))$
- 3. Departure from thermal equilibrium  $(\langle B \rangle_T \neq 0)$
- 3. Requires 1st order phase transition:  $\leftrightarrow m_H \lesssim 50 \text{ GeV}...$
- CP Violation in SM too small
- SUSY parameter space very restricted

 $\Rightarrow$  New physics!

#### Leptogenesis

One–loop corrections to decay of heavy Majorana neutrinos:



#### LEPTOGENESIS

$$\varepsilon_1 = \frac{\Gamma(N_1 \to \phi \, l^c) - \Gamma(N_1 \to \phi^{\dagger} \, l)}{\Gamma(N_1 \to \phi \, l^c) + \Gamma(N_1 \to \phi^{\dagger} \, l)} \propto \sum_{j \neq i} \operatorname{Im}(m_D \, m_D^{\dagger})_{1j}^2 f(M_j^2/M_1^2)$$

- Out–of–equilibrium and CP violation easy to fulfill
- Decay asymmetry  $\rightarrow$  Baryon asymmetry through SM processes ("Sphalerons")
- $Y_B \sim 10^{-4} \varepsilon_1 \Rightarrow \varepsilon_1 \sim 10^{-6}$
- $\varepsilon_1 \propto M_1/M_j$  for  $M_{3,2} \gg M_1$
- $\varepsilon_1$  depends on  $m_D m_D^{\dagger}$

Can we measure/proof Leptogenesis through neutrino properties??

No we can't Experimentally accessible

 $m_{\nu} = U^* \, m_{\nu}^{\text{diag}} \, U^{\dagger} = -m_D^T \, M_R^{-1} \, m_D$ 

Parametrize:

 $m_D = i \sqrt{M_R} R \sqrt{m_{\nu}^{\text{diag}}} U^{\dagger} \text{ with } R R^T = \mathbb{1}$ 

Then leptogenesis depends on:

 $m_D m_D^{\dagger} = \sqrt{M_R} R m_{\nu}^{\text{diag}} R^{\dagger} \sqrt{M_R} \ (\Rightarrow m_{\nu} \lesssim 0.1 \text{ eV})$ 

independent on U and the low energy phases!!

 $\Rightarrow$  There is no direct connection between low and high energy CP violation!!!

- If phases in U all zero and phases in R non-zero... "Leptogenesis with no low energy CP violation"
- Parameter counting:  $M_R$  and  $m_D$  contain 12 + 6 parameters,  $m_{\nu}$  only 6 + 3



#### A BOUND ON LIGHT NEUTRINO MASSES FROM LEPTOGENESIS with analytical limit on $\varepsilon_1$

$$|\varepsilon_1| \lesssim \frac{3M_1}{8\pi v^2} (m_3 - m_1) \simeq \frac{3M_1}{8\pi v^2} \sqrt{\Delta m_A^2}$$

obtain  $Y_B^{\max}(M_1, \tilde{m}_1, \varepsilon_1, \overline{m})$  where  $\overline{m}^2 = \sum m_i^2$ 



 $\overline{m} < 0.2 \text{ eV} \Rightarrow m_i \leq 0.12 \ (0.11) \text{ eV} \Rightarrow \text{ Quasi-degenerate light neutrinos disfavored!}$ Limit on heavy Majorana mass:  $M_1 \gtrsim 2 \cdot 10^9 \text{ GeV}$  (gravitino problem)...


## LEPTON FLAVOR VIOLATION AND NEUTRINOS



## TOPICS NOT COVERED

- Cross sections  $(\nu N)$
- Renormalization of neutrino mass and mixing
- Supernovae
- Geo-neutrinos
- Cosmic rays and neutrinos
- Cosmic neutrino background
- . . .

## SUMMARY

- Neutrinos massless in SM
  - Oscillations discovered  $\Rightarrow$  New physics!!
  - Consistent picture with solar + KamLAND, atmospheric + K2K and short–baseline reactor neutrinos: "Bi–large" mixing scenario
  - $U_{\rm PMNS} \neq V_{\rm CKM}$
  - Still relations between  $U_{\text{PMNS}}$  and  $V_{\text{CKM}}$  implied  $(\theta_{12} + \theta_C = \pi/4)$
  - Dozens of new experiments upcoming...
- Small neutrino mass explained by see–saw mechanism
  - Neutrinos are Majorana particles
  - Lepton Number Violation  $\Rightarrow 0\nu\beta\beta$
- Model–dependent aspects of see–saw
  - Leptogenesis!!
  - Lepton Flavor Violation beyond Neutrinos,  $\mu \to e \gamma$

Exciting future ahead!!