Low Energy Neutrino Physics

Marianne Göger-Neff Technische Universität München

IMPRS, 18.10.2005

Low Energy Neutrino Physics

Introduction

- Neutrino masses and mixing
- Neutrino oscillations

Experimental determination of neutrino properties

Neutrino oscillation experiments

- Solar neutrinos
- Atmospheric neutrinos
- Reactor experiments (θ_{13})

Absolute mass determination

- Beta decay
- Neutrinoless double beta decay
- Cosmological limits

Low energy neutrino astronomy Conclusions

2005: 75th anniversary of the neutrino!

1930 Pauli postulates the neutrino (at that time called neutron)

"Zürich, 4. Dezember 1930

Liebe radioaktive Damen und Herren,

wie der Überbringer dieser Zeilen ... Ihnen des näheren auseinandersetzen wird, bin ich ... auf einen verzweifelten Ausweg verfallen, um den Wechselsatz der Statistik und den Energiesatz zu retten. Nämlich die Möglichkeit, es könnten elektrisch neutrale Teilchen, die ich Neutronen nennen will, in dem Kern existieren, welche den Spin ¹/₂ haben..... Die Masse der Neutronen müßte von derselben Größenordnung wie die Elektronenmasse sein und jedenfalls nicht größer als 0,01 Protonenmasse. Das kontinuierliche β -Spektrum wäre dann verständlich unter der Annahme, daß beim β -Zerfall mit dem Elektron jeweils noch ein Neutron emittiert wird, derart, daß die Summe der Energien von Neutron und Elektron konstant ist. ... Ich ... wende mich erst vertrauensvoll an Euch, liebe Radioaktive, mit der Frage, wie es um den experimentellen Nachweis eines solchen Neutrons stände, wenn dieses ein ebensolches oder etwa 10mal größeres Durchdringungsvermögen besitzen würde, wie ein γ-Strahl."

Wolfgang Pauli (1900 — 1958)

1956 first detection of electron(anti)neutrinos by Cowan and Reines

Neutrino masses and mixing

Standard Model: neutrinos are massless

Assumption: 3 massive neutrinos ν_1 ν_2 ν_3 with masses m_1,m_2,m_3

Flavour eigenstates $\nu_{e} \: \nu_{\mu} \: \nu_{\tau} \neq \nu_{1} \: \nu_{2} \: \nu_{3}$

Neutrino oscillations in vacuum

Time evolution:

$$\left|\nu_{\alpha}(t)\right\rangle = \sum_{i} e^{-E_{i}t} U_{\alpha i} \left|\nu_{i}\right\rangle$$

Mixing between two neutrinos:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

Oscillation probability:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{\nu}}\right)$$

Survival probability:

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^{2}(2\theta) \cdot \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}}\right)$$

Mass difference: $\Delta m^2 = m_2^2 - m_1^2$

Sensitivity $\Delta m^2 \propto E/L$

Note: no absolute mass determination with neutrino oscillation experiments!

Neutrino oscillations in matter – MSW-effect

What do we know about neutrino masses and mixing?

• Number of light active neutrinos (Z⁰-width, LEP): $N_v = 2.991 \pm 0.016$

Open questions

- What is the absolute mass scale of the neutrinos ?
- What is the mass hierarchy: $m_1 < m_2 < m_3$ or $m_3 < m_1 < m_2$?
- How small is the mixing angle θ_{13} ? Is it equal to 0?
- Are neutrinos Dirac $(v_{\alpha} \neq \overline{v_{\alpha}})$ or Majorana particles $(v_{\alpha} = \overline{v_{\alpha}})$?
- Is there CP-violation in the leptonic sector ?
- Are there additional 'sterile' neutrinos ?

ν_e

 ν_{μ}

 v_{τ}

Low Energy Neutrino Physics

Introduction

- Neutrino masses and mixing
- Neutrino oscillations

Experimental determination of neutrino properties

Neutrino oscillation experiments

- Solar neutrinos
- Atmospheric neutrinos
- Reactor experiments (θ_{13})

Absolute mass determination

- Beta decay
- Neutrinoless double beta decay
- Cosmological limits

Low energy neutrino astronomy Conclusions

Sensitivity of neutrino oscillation experiments

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

choose L and E_v for your experiment

Solar Neutrinos

$\theta_{12} \Delta m_{21}^2$

Solar Neutrinos

In the Sun:

$$4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 26.7 \text{ MeV}$$

(0.59 MeV in neutrinos)

98% pp-chain:

Solar Neutrinos

neutrino flux on Earth $\Phi_v \sim 6.5 \ 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$ (ca. 90% pp, 7% ⁷Be, 2% pep, 0.01 % ⁸B) $E_v < 20 \text{ MeV} => \text{ no appearance-experiment possible}$

Solar Neutrino - Experiments

Radiochemical Experiments:

- sensitive only to v_{e}
- low energy threshold
- integral flux measurement

Water Cherenkov Detectors:

- real time measurement
- sensitive to v_e , (v_{μ}, v_{τ})
- high energy threshold (only ⁸B-v)

The Chlorine Experiment

"pioneering experiment"start: 1968
615 t perchloroethylene (C₂Cl₄)

$$v_e + \mathrm{Cl}^{37} \to \mathrm{Ar}^{37} + e^{-7}$$

 $E_v > 814 \text{ keV}$

 $t_{1/2}(^{37}Ar) = 35 \text{ days}$

more than 25 years of data taking

$$R_{exp} = 0.34 \times SSM$$

Nobel prize 2002

GNO – The Gallium Neutrino Observatory

Radiochemical Detection:

- Target: 103 t GaCl₃ solution (~30 t nat. Ga)
- ${}^{71}\text{Ga} + \nu_e \rightarrow {}^{71}\text{Ge} + e^ E_{\nu} > 233 \text{ keV}$ $T_{1/2} ({}^{71}\text{Ge}) = 11.43 \text{ d}$
- Ge-extraction every ~ 4 weeks
- measure back decay ${}^{71}\text{Ge} + e^- \rightarrow {}^{71}\text{Ga}^* + v_{e}$
 - ⁷¹Ga*: X-Ray and Auger-e⁻ 160 eV to 10 keV

GNO – The Gallium Neutrino Observatory

 $^{71}\text{Ge} + \text{e}^{-} \rightarrow ^{71}\text{Ga}^{*} + \nu_{e}$

⁷¹Ga*: X-rays and Auger-e⁻ 160 eV to 10 keV

measured in miniaturized proportional counters (~ 180 days counting time)

GNO - Results

- \Rightarrow overall suppression of the solar ν_e flux
- ⇒ supression factor for low energy neutrinos (pp and ⁷Be): $P = 0.556 \pm 0.071$

⇒ L(CNO) / L(sun) < 6.5 % (3 σ) (SSM: 1.6% CNO)

 \Rightarrow no evidence for time variations after 1 full solar cycle (11 a)

(1 SNU = 1Solar Neutrino Unit
 = 1 neutrino interaction per
 10³⁶ target atoms per second)

Super-Kamiokande

water Cherenkov detector 50000 t H₂O (22500 t fiducial) 11000 PMTs (50 cm diameter) Location: Kamioka mine, 2700 mwe neutrino-electron scattering sensitive to v_{e} , (v_{μ}, v_{τ})

Cherenkov cone

- \Rightarrow energy (~7 pe per MeV)
- \Rightarrow vertex position and time
- \Rightarrow direction

Super-Kamiokande - Results

2

Event/day/bin

Super-Kamiokande I (1996-2001) ~ 22400 solar neutrino evts in 1496 days (~ 15 evts per day)

 $\Phi_{8B} = (2.35 \pm 0.02 \pm 0.08) \ 10^{6} \text{cm}^{-2} \text{s}^{-1}$

 $\Phi_{\rm 8B}/\Phi_{\rm SSM} = 0.406$

- no distortion of energy spectrum
- no significant time variations except seasonal variation
- first observation of the eccentricity of the earth's orbit made with neutrinos
- small day/night asymmetry: $A_{D/N} = (2.1 \pm 2.0 \pm 1.3) \%$ consistent with LMA
- limit on hep-v flux: < 7.3 x 10⁴ cm⁻²s⁻¹ $(SSM: ~9 \times 10^3 \text{ cm}^{-2}\text{s}^{-1})$

SNO – The Sudbury Neutrino Observatory

Heavy Water-Cherenkov detector (1000 t D₂O, 9500 PMTs, 6000 mwe)

Independent measurement of v_e and v_{μ} , v_{τ} \rightarrow , Appearance' experiment

 $\begin{array}{lll} CC & \nu_e + d \rightarrow p + p + e^- & \nu_e \\ NC & \nu_x + d \rightarrow p + n + \nu_x & \nu_e, \nu_\mu, \nu_\tau \\ ES & \nu_x + e^- \rightarrow \nu_x + e^- & \nu_e, (\nu_\mu, \nu_\tau) \end{array}$

Energy threshold ~ 5 MeV => only ⁸B neutrinos

Neutron detection for NC reaction:

Phase1: 11/99 - 05/01

 $n + d \rightarrow {}^{3}H + \gamma (6.25 \text{ MeV})$

 $n + {}^{35}CI \rightarrow {}^{36}CI + \gamma (8.6 \text{ MeV})$

Phase2: 07/01 – 09/03

Phase3: $n + {}^{3}He \rightarrow p + {}^{3}H$ 11/04 - 12/06

0.25% MgCl₂ (2.5 t) higher efficiency

40 He- counters (total of 398 m) event-by-event separation 21

SNO - Results

Result of 391 days salt-phase (nucl-ex 0502021):

- ~2500 solar v detected (~6/day)
- $\Phi_{\rm CC} = (1.68 \pm 0.06^{\rm stat} \pm 0.09^{\rm syst})$
- $\Phi_{\rm NC} = (4.94 \pm 0.21 \pm 0.38)$
- $\Phi_{\rm ES} = (2.35 \pm 0.22 \pm 0.15)$

in units of $10^6 \text{ cm}^{-2} \text{ s}^{-1}$

- 2/3 of ⁸B neutrinos have changed into μ-/τ neutrinos
- neutrino oscillations

best fit: $\Delta m^2 = (8.0 \pm 0.06) \cdot 10^{-5} eV^2$ tan² $\theta_{12} = 0.45 \pm 0.09$ LMA (MSW effect)

SNO – Results (2)

KamLAND

Verify LMA solution for solar neutrino oscillations with reactor antineutrinos

 Δm_{21}^2 , θ_1

Reactor: \overline{v}_{e} source, $\langle E_{v} \rangle \approx 4 \text{ MeV}$ Solar LMA solution: $\Delta m^{2} \sim 7 \cdot 10^{-5} \text{ eV}^{2} \rightarrow L_{osc}/2 \approx 70 \text{ km}$

KamLAND:

average distance to reactors $L_0 \sim 180$ km 1000 t liquid scintillator inverse beta decay (threshold 1.8 MeV)

$$\overline{v}_e + p \rightarrow e^+ + n$$

 $\longrightarrow n + p \rightarrow d + \gamma (2.2 \text{ MeV})$

Complementarity:

Solar neutrino experiments

- electron neutrinos
- matter effects dominant (for ⁸B neutrinos)
- adiabatic conversion

<u>KamLAND</u>

- electron antineutrinos
- vacuum oscillations
- matter effects negligible
- oscillation phase crucial
 - for detected effect

Kamland - Results

hep-ex 0406035

258 events detected (03/2002 – 01/2004: 766 t y)

365 ± 24 events expected (w/o oscillation)

18 ± 7 background events

→ disappearance confirmed @ 99.998% C.L.

energy spectrum shows deformation

→ neutrino decay, decoherence excluded (95% C.L. resp. 94% C.L.)

Global Fit: Kamland + Solar Neutrino Experiments

Solar neutrinos - Future

99.994% of solar neutrino spectrum is NOT measured yet in real-time mode

SSM: Bahcall Serenelli 2005

Solar Neutrinos: Future

<u>Goal:</u> low energy neutrino spectroscopy: ⁷Be, pep, CNO, pp

- test transition MSW- to vacuum oscillations
- precision measurement θ_{12} , Δm_{21}^2
- test solar models:

$$\begin{split} \Phi_{B}/\Phi_{SSM} &= 0.87 \,(1.0 \pm 0.05^{exp} \pm 0.23^{theo}) \\ \Phi_{pp}/\Phi_{SSM} &= 1.01 \,(1.0 \pm 0.02 \pm 0.01) \\ \Phi_{Be}/\Phi_{SSM} &= 1.03 \,(1.0^{+0.23}_{-1.0} \pm 0.12) \\ L_{CNO} &= (0.0^{+2.7}_{-0.0})\% \quad (L_{SSM} = 1.6\%) \\ L_{v}/L_{\gamma} &= 1.4^{+0.2}_{-0.3} \quad (hep-ph \, 0406294) \end{split}$$

- a 10% measurement of ⁷Be yields pp-flux with <1% uncertainty
- determination of pp, pep gives solar luminosity (in neutrinos)
- CNO: important for heavy stars

Future Experiments

experiment	reaction	detector
LENS	$v_e^{115}In \rightarrow e^{-115}Sn,e,\gamma$	60 tons In-loaded scintillator
MOON	ν _e ¹⁰⁰ Mo→e ⁻¹⁰⁰ Tc(β)	3.3 ton ¹⁰⁰ Mo foil + plastic scintillator
Lithium	v _e ⁷ Li→e ⁻⁷ Be	Radiochemical, 10 ton lithium
BOREXINO	ve-→ve-	100 ton Liquid scintillator (7Be only)
KAMLAND *	ve-→ve-	1000 ton Liquid scintillator (7Be only)
XMASS	ve-→ve-	10 ton Liquid Xe (pp, ⁷ Be)
HERON	ve-→ve-	10 ton super-fluid He (pp, ⁷ Be)
CLEAN	ve-→ve-	10 ton Liquid Ne (pp, ⁷ Be)
TPC type	ve-→ve-	Tracking electron in gas target (pp, 7Be)
SNO+ (Liq.scint.)	ve·→ve·	1000 ton Liquid scintillator (pep, CNO)

CC exp. (v_e only)

ve scattering exp. $(v_e + \alpha(v_\mu + v_\tau))$

Borexino @ Gran Sasso

<u>Goals:</u>

•

~ 35 ev/day

Borexino @ Gran Sasso

v-e⁻ scattering

inverse beta decay

<u>Goals:</u>

- ⁷Be solar neutrino measurement
- CNO and pep neutrinos
- Long baseline reactor neutrinos
- Terrestrial neutrinos
- Supernova neutrinos

- ~ 100 ev for SN in 10kpc
- Search for neutrino magnetic moment with an artificial v source

35 ev/day

1-2 ev/day

20 ev/year

10-30 ev/y

The Borexino Detector

Location: Gran Sasso Underground Laboratory, Italy 3600 mwe (residual muon flux = 1 μ /m² hour)

Core of the detector: 300 tons of liquid scintillator contained in a nylon vessel of 4.25 m radius (PC+PPO)

1st shield: 1000 tons of ultra-pure buffer liquid (pure PC) contained in a stainless steel sphere of 7 m radius

2214 photomultiplier tubes pointing towards the center to view the light emitted by the scintillator

 2^{nd} shield: 2000 tons of ultra-pure water contained in a 18 m Ø cylindrical dome

200 PMTs mounted on the SSS pointing outwards to detect light emitted in the water by muons crossing the detector

300 tons of scintillator

PPPPPPPP

Radiopurity constraints

- Neutrino-electron-scattering of ⁷Be-neutrinos in liquid scintillator: continuous recoil energy spectrum up to ~ 700 keV, no special event signature => high radiopurity levels required
- Intrinsic contamination of the scintillator:

U and Th < 10^{-16} g/g; 40 K < 10^{-14} g/g; 14 C / 12 C < 10^{-18}

- Contamination of the nylon vessel: U and Th < 10^{-12} g/g;
- Constraints on N₂ used to sparge scintillator:

Kr <0.14 ppt (0.2 µBq ⁸⁵Kr/m³ N₂)

Ar < 0.36 ppm (0.5 mBq 39 Ar/m³ N₂)

- Contamination of the buffer liquid: U and Th $< 10^{-14}$ g/g
- Contamination of the external water: U and Th $< 10^{-10}$ g/g

Each of these points required careful selection and clean handling of materials, + implementation of sophisticated purification techniques

Borexino

Tests of scintillator purification (Si-gel, H_2O extraction, distillation) with the CTF (prototype of Borexino: 4 t scint., 100 PMTs, 1000 t H_2O)

CTF - Result on Background

Remaining problem: ²¹⁰Pb, reduction factor to achieve ~ 10

Borexino - Schedule

Inner Vessel installation completed in 2004

Water filling: beginning 2006 Scintillator filling: summer 2006 Start data taking: 2007
First signals in Borexino

37

Source test: radon loaded scintillator in a quartz cylindrical cell (4x4 cm) moved in different positions on the z-axis

Kamland solar

Background problem:

- Kr: 10⁶ too high
- ²¹⁰Pb and daughters (from Radon): 10⁵ too high
- Cosmogenic background x 7 compared to Borexino
- R&D phase (distillation)
- 6 M\$ invest. System installation summer 2006

distillation test system

SNO+

Atmospheric neutrinos

Super-Kamiokande

water Cherenkov detector 50000 t H_2O , 11000 PMTs 2700 mwe

detect neutrinos from 100 MeV - 10 TeV via v-N CC-interactions μ -like events: v_{μ} produces a μ , which gives a sharp ring

e-like events: v_e produces an electron, which produces a "fuzzy" ring (em shower)

Super-Kamiokande - Results

Super-Kamiokande – L/E Analysis

KEK to Kamioka: K2K-Experiment

Long-Baseline- accelerator experiment to test atmospheric neutrino oscillations

CHOOZ - limit for θ_{13}

Searching for θ_{13} with reactor neutrinos

• reduce systematic errors: monitor absolute neutrino flux with near detector

Proposed Sites for an Experiment

Ingredients: - strong nuclear power plant as v source

- near detector (< 200m) to monitor the absolute v flux
- far detector @ 1-2 km, well shielded against cosmic rays

Double-Chooz

<u>Goal:</u> $\sin^2(2\theta_{13}) > 0.02 - 0.03$

- → higher statistics (N_{far}~ 5 ·10⁴ in 3a) 10 t Gd-loaded scintillator $\sigma_{stat} < 0.5\%$
- → 2 identical detectors: ,near' ~ 150 m (60 mwe) ,far' ~ 1050 m (300 mwe) → reactor related errors -> 0 → relative normalization $\sigma_{rel} < 1\%$
- → background suppression: S/N ~ 25 in Chooz S/N > 100 in Double-Chooz

start data taking 2007 (far) 2008 (near)

Letter of Intent: hep-ex 0405032

Expected Sensitivity 2007-2012

- Far Detector starts in 2007
- Near detector follows ~18 months later
- after 3 years:
 60000 evts in far det.
 3 mio evts in near det.
- look for rate deviation from 1/r² &
- look for spectral distortion

Double Chooz can surpass the original Chooz bound in 6 months

Double-Chooz - Site

Double Chooz - Detector

Double Chooz - Systematics

•	Reactor systematics:	CHOOZ	Double-Chooz Goal
	– reactor power	0.7%	-
	– energy per fission	0.6%	-
	– reaction cross section	1.9%	-
•	Detector systematics: – number of protons – detection efficiency	0.8% 1.5%	0.2% 0.5%

- relative normalization of the 2 detectors < 1% is crucial!
 - solid angle (different for near and far)0.2%
 - dead time (near) <1%</p>
- long term stability of the liquid scintillator is crucial!

Accidental Background

Correlated Background

Background from fast neutrons from muon capture and spallation evaluated in simulations:

Rate of \bar{v}_{e} -mimicking events

- between 1 and 8 MeV
- without veto signal

in far detector (300m.w.e): N_{bck}< 0.5 evts/day (90% C.L.) Signal (no osc) ≈ 85 evts/day

in near detector (60m.w.e): N_{bck}< 3.2 evts/day (90%C.L.) Signal ≈ 4000 evts/day

Muon induced radio nuclides

- produced by muon reactions on ¹²C (⁹Li, ⁸He, ¹¹Li)
- "long" life times (0.1 1 s)
- spectral shape is known
- measurement of σ_{prod} at SPS CERN with $\langle E_{\mu} \rangle$ =190 GeV

(T. Hagner et al., AstroparticlePhys.14, 33 (2000))

	Near detector		Far detector		
Isotopes	R_{μ}	R_{μ}	R_{μ}	R_{μ}	
	$(E^{0.75} \text{ scaling})$	(E > 500 GeV)	$(E^{0.75} \text{ scaling})$	(E > 500 GeV)	
	per day				
⁹ Li	17 ± 3	3.6	1.7 ± 0.3	0.36	
$^{8}\mathrm{He}$		⁸ He & ⁹ Li mea	Ie & ⁹ Li measured together		
S/B:	> 100):1	> 50:1		

 data from CHOOZ, CTF and KamLAND

1/5 scale prototype

- Test for material compatibility
 and various procedures
- completed Summer 2005
- will be filled soon

Low Energy Neutrino Physics

Introduction

- Neutrino masses and mixing
- Neutrino oscillations

Experimental Determination of neutrino properties

Neutrino oscillation experiments

- Solar neutrinos
- Atmospheric neutrinos
- Reactor experiments (θ_{13})

Absolute mass determination

- Beta Decay
- Neutrinoless Double Beta Decay
- Cosmological limits

Low Energy Neutrino Astronomy Conclusions

Absolute Neutrino Mass Determination

<u>Supernovae:</u>

SN produce many neutrinos in a short time, and measuring time shifts can in principle measure neutrino masses, $m_v < ~30 \text{ eV}$

• Weak decays:

from neutrino oscillation results, all $\Delta m^2 < 0.1 \text{ eV}^2$, therefore only v_e measurements have useful sensitivity => current best is Tritium beta decay, $m_v < 2.2 \text{ eV}$

• <u>Neutrinoless double beta decay:</u>

If neutrinos are Majorana particles, then $0\nu\beta\beta$ is allowed => observation of $0\nu\beta\beta$ would be direct evidence for neutrino mass, $<m_v> < ~1.1 \text{ eV}$

<u>Comological limits:</u>

Neutrinos are the second most numerous particle in the Universe => even a tiny neutrino mass could have astrophysical implications, $\Sigma m_v < 0.23 \text{ eV}(?)$

Beta-Decay- Experiments

• β -spectrum close to the end point: $dN/dE \propto (E_0 - E_e) \cdot [(E_0 - E_e)^2 - m_v^2]^{1/2}$

 ${m_\nu}^2 = \sum \left| U_{ei} \right|^2 m_i^2$

• Tritium decay ³H
$$\rightarrow$$
 ³He + e⁻ + \overline{v}_{e}
E₀ = 18.57 keV, t_{1/2} = 12.3 a

 $\begin{array}{l} \mbox{Mainz experiment} & (hep-ex 0412056) \\ \mbox{condensed T_2 film} \\ \mbox{MAC-E filter, $\Delta E = 4.8 eV} \\ \mbox{m_v^2 = (-0.6 \pm 2.2 \pm 2.1) eV2} \\ \mbox{\Rightarrow m_v < 2.3 eV$ (95\% CL$)} \\ \end{tabular}$

¹⁸⁷Re with cryo bolometers (MIBETA) $E_0 = 2.5 \text{ keV}, t_{1/2}=5 \cdot 10^{10} \text{ a}$

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

$$\mathbf{m}_{ee} = \mathbf{m}_{1} |\mathbf{U}_{e1}|^{2} + \mathbf{m}_{2} |\mathbf{U}_{e2}|^{2} e^{i\phi_{1}} + \mathbf{m}_{3} |\mathbf{U}_{e3}|^{2} e^{i\phi_{2}}$$
• sensitive to CP phases
• cancellations possible
$$\mathbf{u}_{e3}|^{2} e^{i\phi_{31}} \mathbf{m}_{3}$$

$$\mathbf{u}_{ee} = \mathbf{u}_{1} |\mathbf{U}_{e3}|^{2} e^{i\phi_{31}} \mathbf{m}_{3}$$

$$\mathbf{u}_{ee} = \mathbf{u}_{1} |\mathbf{U}_{e2}|^{2} e^{i\phi_{21}} \mathbf{m}_{2}$$

$$\mathbf{u}_{ee} = \mathbf{u}_{1} |\mathbf{u}_{e2}|^{2} e^{i\phi_{21}} \mathbf{u}_{2}$$

$$\mathbf{u}_{ee} = \mathbf{u}_{1} |\mathbf{u}_{e2}|^{2} e^{i\phi_{21}} \mathbf{u}_{2}$$

$$m_{ee} > \geq const. \left(\frac{1}{MT} \right)^{1/2}$$

with background: $\langle m_{ee} \rangle \ge \text{const.} \left(\frac{b \Delta E}{M T}\right)^{1/4}$

•

•

$$b = background level [1/(kg \cdot year \cdot keV)]$$

Evidence for $0\nu\beta\beta$ in ⁷⁶Ge?

Heidelberg-Moscow-Experiment: 5 detectors with 10.96 kg enriched Ge (86% ⁷⁶Ge) Data taking 1990 – 2003: 71.7 kg yr Endpoint ⁷⁶Ge: 2039 keV

Analysis by subgroup yields peak at 2038.1 keV with 28.75 \pm 6.86 events (4.2 σ)

→	T _{1/2}	= (0.69 – 4.18) 10 ²⁵ a	(3 o)
	m _{ee}	= (0.24 – 0.58) eV	(3 o)

50% error assumed on M_{nuc} : $m_{ee} = 0.1 - 0.9 \text{ eV}_{20}$

Klapdor-Kleingrothaus et al., PLB 586 (2004) 198

until 2001 (53.9 kg yr): $0\nu\beta\beta$ not observed $t_{1/2}^{0\nu} > 1.9 \times 10^{25}$ y $m_{ee} < 0.35$ eV (90% c.l.)

HM collaboration, Klapdor–K. et al., Eur.Phys. J. A12 (2001) 147

CUORICINO

low temperature detectors @ Gran Sasso

40.7 kg of TeO₂ (18 crystals 3x3x6 cm³ + 44 crystals 5x5x5 cm³) ¹³⁰Te (Q=2529 keV, nat. abundancce 34 %)

Start in 2003

Search for $0\nu\beta\beta$:

```
T_{1/2}^{0v} (<sup>130</sup>Te) > 1.8 x 10<sup>24</sup> a
<m<sub>v</sub>> < 0.2 - 1.1 eV (hep-ph0501034)
```


Future: <u>CUORE</u> Array of 988 crystals: 19 towers of 52 crystals/tower total mass: 0.78 ton of TeO₂

source = detector

sensitivity after 10 years: m_{ee}< 11 – 62 meV

NEMO 3

Source: 10 kg of $\beta\beta$ isotopes cylindrical, $S = 20 \text{ m}^2$, $e \sim 60 \text{ mg/cm}^2$

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H_2O

Calorimeter: **1940 plastic scintillators** coupled to low radioactivity PMTs

 $\beta\beta0v$ search

 $\begin{array}{ll} 100 \text{Mo} & 6.914 \text{ kg} \\ Q_{\beta\beta} = 3034 \text{ keV} \end{array} \qquad \begin{array}{ll} 82 \text{Se} & 0.932 \text{ kg} \\ Q_{\beta\beta} = 2995 \text{ keV} \end{array}$

Double Beta Decay – Future

improved nuclear matrix elements calculations needed

GERDA @ Gran Sasso

Experimental Concept:

- HP Ge-diodes (86%⁷⁶Ge): **point-like** energy deposition at $Q_{\beta\beta} = 2039 \text{ keV}$
- Operation of bare Ge diodes in high-purity LN₂ or LAr shield
- Baseline: LN₂: ρ=0.8 g/cm³
- possible upgrade LAr: ρ=1.4 g/cm³, active anti-coincidence with scintillation light from LAr
- Reduction of backgrounds key to sensitivity :
 - Half-life limit
 - w/o backgrounds: $t_{1/2} \propto (MT)$
 - with backgrounds: $t_{1/2} \propto (MT)^{1/2}$
- Only method to scrutinize 0v-DBD claim on short time scale: test T_{1/2}, not m_{ee} !
- Phased approach: increment of target mass

Phases and Physics reach of GERDA

GERDA - Setup

4m Ø Cu cryostat 50 m³ of liquid nitrogen 10 m Ø water tank 700 m³ of water

Graded shielding

Advantages of water:

- shielding > than LN,
- cheaper,
- safer,
- neutron moderator,
- Cherenkov medium for muon veto

→ external γ/n/m background
 < 0.001 cnt/(keV kg y) for LN
 ~ factor 10 smaller for LAr

Background

Background Contributions :

- internal ⁶⁸Ge, ⁶⁰Co
- surface contamination
- external gammas ²⁰⁸TI
- ²²²Rn in liq. N₂, Ar
- U, Th in holder
- ext. muons, neutrons

Background Reduction:

- Muon Veto
- Anti-coincidence between detectors
- Segmentation of readout electrodes (Phase II)
- Pulse shape analysis (Phase I+II)
- Coincidence in decay chain (Ge-68)
- Scintillation light detection (LAr)

Total Background:

- Phase I: $< 10^{-2} / (\text{keV kg y})$
- Phase II: $< 10^{-3} / (\text{keV kg y})$
- (HDM $\sim 0.11/(keV kg y)$
- CTF ~ 0.002 /(keV kg y))
GERDA - Schedule

- approved by LNGS with location in Hall A,
- substantially funded by BMBF, INFN, MPG, and Russia in kind
- construction to start in LNGS Hall A in summer 2006
- parallel and fast R&D for phase II
- start of data taking in 2007
 - goal: phase I: background 0.01 cts / (kg·keV·y)
 - scrutinize KKDC result within 1 year
 phase II : background 0.001 cts / (kg·keV·y)
 - ► $T_{1/2} > 2 \cdot 10^{26} \text{ y}$, $< m_{ee} > < 0.09 0.29 \text{ eV}$
 - phase III : world wide collaboration
 - $\blacktriangleright\ T_{1/2} > {\sim}10^{28}\ y$, ${<}m_{ee}{>} {\sim}10\ meV$

GERDA- Schedule

Cosmological limits on neutrino masses

neutrinos are Hot Dark Matter (HDM) => structure formation suppressed on small scales (large k)

neutrino mass is one parameter in LSS and CMB determination

$$\frac{\Delta P_{m}}{P_{m}} \approx -8 \frac{\Omega_{v}}{\Omega_{m}} \approx -0.8 \left(\frac{\Sigma m_{v}}{1 \text{eV}}\right) \left(\frac{0.1}{\Omega_{m} \text{ h}^{2}}\right)$$

Results e.g.

- WMAP + 2dFGRS + Ly α => $\Sigma m_v < 0.71 \text{ eV}$ (95%CL) (Spergel et al., astro-ph 0302209)
- WMAP + SDSS => $\Sigma m_v < 1.7 \text{ eV}$ (95%CL) (Tegmark et al., astro-ph 0310723)

Similar sensitivity as laboratory measurements

Caveat: Results are model dependent!

Future: astronomy with neutrinos

Neutrino telescopes:

large water (or ice) Cherenkov detectors (km³) for the detection of UHE neutrinos

76

LENA (Low Energy Neutrino Astrophysics)

Low background detector with ~ 50 kt liquid scintillator , ~ 10000 PMTs

- detection of galactic Supernova neutrinos
- detection of Supernova relic neutrinos
- search for proton decay p -> K⁺ \overline{v}
- spectroscopy of solar neutrinos (pep, CNO)
- detection of geo neutrinos (georeactor?)
- detection of low energy atmospheric neutrinos
- detector for very long baseline accelerator experiments

LENA – Supernova neutrinos

possible neutrino reactions in liquid scintillator:

Event rates for a SN IIa in the galactic centre (~10 kpc)

- (1) $v_e + p \to e^+ + n$ (Q = 1.8 MeV) (2) $v_e + {}^{12}C \to e^+ + {}^{12}B$ (Q = 13.4 MeV) (3) $v_e + {}^{12}C \to e^- + {}^{12}N$ (Q = 17.3 MeV) ~ 65
- (4) $v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*$ with ${}^{12}C^* \rightarrow {}^{12}C + \gamma$ (Q = E_{γ} = 15.1 MeV) ~ ~ 4000
- (5) $v_x + e^- \rightarrow v_x + e^-$ (elastic scattering off electrons) ~ 480 (6) $v_x + p \rightarrow v_x + p$ (elastic scattering off protons). ~2200
 - electron antineutrino spectroscopy with (1), (2)
 - electron neutrino spectroscopy with (3) (use (1) to disentangle (2), (3))
 - (4) gives information on total neutrino flux (monoenergetic γ)
 - low energy neutrino spectroscopy with (5), (6)

LENA - Supernovae Relic Neutrino Detection

- SRN flux gives information about star formation in the early universe
- Super-Kamiokande limit (< 1.2 cm⁻² s⁻¹ for E > 19 MeV) close to theoretical expectations
- use delayed coincidence $\overline{\nu}_{e} \: p \: \text{->} \: e^{\scriptscriptstyle +} \: n$
- advantage of LENA:

LENA - solar neutrinos

high statistics solar neutrino spectroscopy:

- ⁷Be ~ 5400 events per day
 - ⇒ test of even small flux variations, e.g. due to density profile fluctuations look for coincidences with helioseismological data !
 - ⇒ test of day/night asymmetry (MSW effect in the earth)
- pep ~ 300 events per day
 ⇒ solar luminosity
- CNO ~ 300 events per day
- ⁸B-v_e ~ 3 events per day
 from CC reactions on ¹³C
- ⇒ precise determination of solar fusion processes

LENA - geoneutrinos

Detection via p + $\overline{\nu}_e \rightarrow n + e^+$

- source of the terrestrial heat flow
- contribution of natural radioactivity
- distribution of U, Th, K in crust, mantle and core
- hypothetical natural reactor at the Earth's center?

LENA - atmospheric neutrinos

- LENA can measure the low energy part of atmospheric neutrinos, esp. $\overline{\nu_e}$
- for 30 MeV 200 MeV $\nu_{\rm e}$:

 $\begin{array}{l} L_{osc} \sim 10^3 \, \text{km} \ \ \text{to} \ \ 7 \ x \ 10^3 \, \text{km} \ \ (\Delta m^2 \ \text{solar neutrinos!}) \\ \hline \overline{\nu_e} < \rightarrow \overline{\nu_{\mu}} \ \ \text{atmospheric oscillations, but based on} \ \Delta m^2_{solar} \end{array}$

• observable ?

...difficult (low statistics), needs further investigations

LENA – proton decay

- proton decay predicted by GUT, SUSY theories
- decay mode p -> $K^+\overline{v}$ is invisible in water Cherenkov detectors

• 3-fold coincidence, use time and position correlation, pulse shape analysis

Summary

Great progress in neutrino physics during last decade:

- solar and atmospheric neutrino oscillations detected => $m_v \neq 0$ physics outside SM
- upper limits from direct mass measurements (beta decay, 0vββ, cosmological limits)
- all solar experiments so far have confirmed the Standard Solar Model

Program for the future:

- determine absolute neutrino mass (beta decay, $0\nu\beta\beta$, cosmological limits)
- determine θ_{13} , improve accuracy on θ_{12} , θ_{23} , Δm_{21}^2 , Δm_{32}^2 (reactor, solar, atm oscillation experiments)
- establish Majorana nature of neutrino $(0\nu\beta\beta)$
- use neutrinos as messengers from the Sun, the Earth, the Universe...

					222
The Exc Net	Growin itement itrino Ph	ng of nysics	I No of Kau Kami an atr	K2K confirms atmospheric oscillations KamLAND confirms solar oscillations <u>Nobel Prize</u> for neutrino astroparticle physics! SNO shows solar oscillation to active flavor Super K confirms solar deficit and "images" sun Super K confirms the atmospheric deficit <u>Nobel Prize</u> for ⊽ discovery! LSND sees an oscillation signal obel prize for discovery distinct flavors! mioka II and IMB see pernova neutrinos ioka II and IMB see pernova neutrinos	
			SAGE LEP shows 3	and Gallex see the solar deficit active flavors	
Pauli Predicts	Reines & Cowan	2 distinct flav Davis discovers	Kamioka II confiri ors identified	ms solar deficit	
the Neutrino	(anti)neutrinos	the solar deficit		_	
1930	1955		1980	2005	

,The neutrino matrix'/ physics 0411216

The End

Global Fit: Kamland + Solar Neutrino Experiments

87

LSND, MiniBoone

<u>Goal</u>: Search for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ <u>LSND</u>: $E_{\nu} \sim 30 \text{ MeV}, L \sim 30 \text{ m}$ $3.8\sigma \text{ excess of } \nu_{e}$ $\Delta m^{2} = 0.3 - 3 \text{ eV}^{2}$ $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = (0.264 \pm 0.067 \pm 0.045)\%$

<u>Problem:</u> third Δm^2 at ~ 1eV \rightarrow 4 light v? <-> Z⁰ resonance (LEP): N_v=3 \rightarrow sterile neutrino ?!

data taking since end of 2002 Results expected soon !

Experimental Methods for the Determination of neutrino parameters

- meutrino oscillations
 - \rightarrow mass differences Δm^2 , mixing angles θ , maybe CP-violating phase δ

- kinematics of weak decays (e.g. beta decay)
 → neutrino mass
- neutrinoless double beta decay
 → Majorana-neutrinos, neutrino mass (maybe Majorana-phases φ_i)
- cosmological limits
 - ➔ neutrino masses, number of neutrinos

Principle of the MAC-E-filter

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- ye⁻ in forward direction: magnetically guided
- > adiabatic transformation: μ = E_⊥/B = const.
 - \Rightarrow parallel e beam
- > Energy analysis by electrostat. retarding field ∆E = E⋅B_{min}/B_{max} = E⋅A_{s,eff}/A_{analyse} ≈ 4.8 eV (Mainz)

