From Little Bangs to the Big Bang

Inauguration of the Max Planck Research School on Elementary Particle Physics, October 17th, 2005 *John Ellis*

The Universe is expanding

• Galaxies are receding from us Hubble expansion law: galactic redshifts

The Universe is expanding

Galaxies are receding from us Hubble expansion law: galactic redshifts
The Universe was once 3000 smaller, hotter than today cosmic microwave background radiation

Cosmic Microwave Background

Almost the same in different directions \rightarrow

Small variations discovered by COBE satellite →

The Universe is expanding

• Galaxies are receding from us Hubble expansion law: galactic redshifts • The Universe was once 3000 smaller, hotter than today cosmic microwave background radiation • The Universe was once a billion times smaller, hotter than today light elements cooked in the Big Bang

Big-Bang Nucleosynthesis

Universe contains about 24% Helium 4 • Could only have been cooked by nuclear reactions in dense early Universe Dependent on amount of matter in Universe Dependent on number of particle types

The Very Early Universe

- Size: a → zero
- Age: t → zero
- Temperature: $T \rightarrow large$
 - 1~1/a, t~
- Energies: E ~ T
- Rough magnitudes:
 - T ~ 10,000,000,000 degrees
 - $E \sim 1 \text{ MeV} \sim \text{mass of electron}$
 - $t \sim 1$ second

Need particle physics to describe earlier history

The 'Standard Model' of Particle Physics

Proposed by Abdus Salam, Glashow & Weinberg

In agreement with all confirmed laboratory experiments

Measurement of the number of families of elementary particles: 3!

Relativistic Heavy-Ion Collisions

Recreate the first 10⁻⁶ seconds ..

... and probe the quark-hadron phase transition

The Density Budget of the Universe

• Total density ~ critical Theory of inflation, measurements of CMB: **Baryon density small** 0 **Big-bang nucleosynthesis, CMB:** Total matter density much larger **Clusters of galaxies:**

The CMB according to WMAP

T (UK) 200 Combining different frequencies

The CMB Power Spectrum

High-redshift supernovae are standard candles

Universe now accelerating, previously decelerating

How do Matter and Antimatter Differ?

Dirac predicted the existence of antimatter: same mass opposite internal properties: electric charge, ... Discovered in cosmic rays Studied using accelerators

Matter and antimatter not quite equal and opposite: WHY?

Why does the Universe mainly contain matter, not antimatter?

Experiments at LHC and elsewhere looking for answers

Generating the matter in the Universe Sak

- Need difference between matter, antimatter charge symmetry broken in laboratory
 Need matter-creating interactions present in unified theories – not yet seen
- Need breakdown of thermal equilibrium possible during phase transition (GUT, SM?) in decays of heavy particles (singlet v_R?)

Can we calculate from laboratory measurements?

The Density Budget of the Universe

Total density ~ critical Theory of inflation, measurements of CMB: **Baryon density small** 0 **Big-bang nucleosynthesis, CMB:** Total matter density much larger Clusters of galaxies: Mainly cold dark matter 0 **Enables structure formation**

Formation of Structures in Universe

- Develop from CMB fluctuations
- Need amplification
- Possible with massive weakly-interacting particles
- Light neutrinos escape from smaller structures → disfavoured
- Prefer non-relativistic 'cold dark matter'

Structures observed in the Universe

Evidence for Dark Matter

Galaxies rotate more rapidly than allowed by centripetal force due to visible matter

X-ray emitting gas held in place by extra dark matter

Even a 'dark galaxy' without stars

Structures in Universe vs Concordance Model

Flat Universe: $\Omega_{Tot} = 1$, Cold dark matter: $\Omega_{CDM} \sim 0.25$, No hot dark matter, Few baryons: $\Omega_{b} \sim 0.05$, Dark energy: $\Omega_{A} \sim 0.7$

Do Neutrinos matter?

- Have very small masses but non-zero – oscillation experiments
 Might males are some of doub matter.
- Might make up some of dark matter less than 10%?
- And would escape from galaxies moving relativistically
- Also heavier neutrinos?
 - but unstable: generate matter via Sakharov?
- Need heavier stable dark matter particles supersymmetric particles?

Not much neutrino mass density

astro-ph/0204152 2dF team:

According to WMAP et al ...

Not much Hot (Neutrino) Dark Matter

'Supersymmetric' Dark Matter?

- Supersymmetry would relate
 fermionic 'matter' particles ->
 bosonic 'force' particles
- Might help explain mass scale of particles
- Lightest supersymmetric particle stable? should weigh below 1000 GeV
- Density similar to required cold dark matter

Directly laboratory searches, indirect astrophysical searches

Why Supersymmetry (Susy)?

- Hierarchy problem: why is $m_W \ll m_P$? ($m_P \sim 10^{19}$ GeV is scale of gravity)
- Alternatively, why is
 - $G_F = 1/m_W^2 >> G_N = 1/m_P^2$?
- Or, why is

 $V_{\text{Coulomb}} >> V_{\text{Newton}}$? $e^2 >> G m^2 = m^2 / m_P^2$

- Set by hand? What about loop corrections? $\delta m_{H,W}^2 = O(\alpha/\pi) \Lambda^2$
- Cancel boson loops ⇔ fermions
- Need $|m_B^2 m_F^2| < 1 \text{ TeV}^2$

Other Reasons to like Susy

루.60 5⁻⁶⁰

50

40

30

20

SM World Average

 $\alpha_{s}(M_{z})=0.117\pm0.005$

It stabilizes the Higgs potential for low masses

100

It enables the gauge couplings to unify

Dark Matter in the Universe

Astronomers say that most of the matter in the Universe is invisible Dark Matter

'Supersymmetric' particles ?

We shall look for them with the LHC

Minimal Supersymmetric Extension of Standard Model (MSSM)

Particles + spartners + 2 Higgs doublets

- Soft supersymmetry-breaking parameters: Scalar masses m₀, gaugino masses m_{1/2}, trilinear soft couplings A_λ
- Often assume universality:

Single m_0 , single $m_{1/2}$, single A_{λ}

- Called constrained MSSM = CMSSM
- Gravitino mass?

 $m_{3/2} = m_0$ in minimal supergravity

Lightest Supersymmetric Particle

• Stable in many models because of conservation of R parity: $R = (-1)^{2S-L+3B}$ where S = spin, L = lepton #, B = baryon #• Particles have R = +1, sparticles R = -1: Sparticles produced in pairs Heavier sparticles \rightarrow lighter sparticles Lightest supersymmetric particle (LSP) stable

Possible Nature of LSP

No strong or electromagnetic interactions Otherwise would bind to matter Possible weakly-interacting scandidates **Sneutrino** (Excluded by LEP, direct searches) Lightest neutralino χ (spartner of Z, γ , H) Gravitino

(nightmare for dark matter detection)

Constraints on Supersymmetry

 Absence of sparticles at LEP, Tevatron selectron, chargino > 100 GeV
 squarks, gluino > 250 GeV

• Indirect constraints

Higgs > 114 GeV, b -> s γ g_µ

• Density of dark matter lightest sparticle χ : WMAP: 0.094 < $\Omega_{\chi}h^2$ < 0.124

BNL-E821 00

a, - 11 659 000 (10⁻¹⁰

Current Constraints on CMSSM

Supersymmetric Benchmark Studies

Lines in m₀ (GeV) susy space 1000 allowed by accelerators, WMAP data Nb. of Observable Ptcs. Sparticle Detectability @ LHC 15 along one 10 WMAP line

Battaglia et al

Supersymmetry Searches at LHC

Typical' supersymmetric Event at the LHC: 'Easy' to see

LHC and LC Scapabilities

LHC almost `guaranteed' to discover supersymmetry if it is relevant to the mass problem

> LC oberves complementary sparticles

Battaglia et al

Different **Regions of** Sparticle Parameter Space if Gravitino LSP Density below WMAP limit

Slepton Trapping at the LHC?

- $\beta\gamma$ typically peaked ~ 2
- Staus with $\beta\gamma < 1$ leave central tracker after next beam crossing
- Staus with $\beta\gamma < \frac{1}{4}$ trapped inside calorimeter
- Staus with $\beta \gamma < \frac{1}{2}$ stopped within 10m
- Can they be dug out?

Benchmark scenarios \rightarrow	ϵ	ζ	η
Number of particles with	850	7	7
$\beta\gamma < 0.25$			
Range in C (cm)	60	136	129
Range in Fe (cm)	29	65	61
Number of particles with	7700	100	90
$eta\gamma < 0.5$			
Range in C (cm)	600	1360	1290
Range in Fe (cm)	290	650	610

Extract Cores from Surrounding Rock?

- Use muon system to locate impact point on cavern wall with uncertainty < 1cm
- Fix impact angle with accuracy 10⁻³
- Bore into cavern wall and remove core of size $1 \text{cm} \times 1 \text{cm} \times 10\text{m} = 10^{-3}\text{m}^3 \sim 100 \text{ times/year}$
- Can this be done before staus decay? Caveat radioactivity induced by collisions! 2-day technical stop ~ 1/month
 Not possible if lifetime ~10⁴s, possible if ~10⁶s?

Strategies for Detecting Supersymmetric Dark Matter

 Annihilation in galactic halo $\chi - \chi \rightarrow$ antiprotons, positrons, ...? Annihilation in galactic centre $\chi - \chi \rightarrow \gamma + \dots$? • Annihilation in core of Sun or Earth $\chi - \chi \rightarrow \nu + \dots \rightarrow \mu + \dots$ • Scattering on nucleus in laboratory $\chi + A \rightarrow \chi + A$

Annihilation in Galactic Halo

Antiprotons

Annihilations in Galactic Centre

Annihilations in Solar System ...

Prospective experimental sensitivities

Benchmark scenarios

JE + Feng + Matchev + Olive

Elastic Scattering Cross Sections

From global fit to accelerator data

Latest experimental upper limit

Big Bang ↔ Little Bangs

 The matter content of the Universe
 Dark matter
 Dark energy
 Origin of matter Experiments at particle colliders
 Early Universe
 Supersymmetry
 Matter-antimatter
 asymmetry

Learn particle physics from the Universe Use particle physics to understand the Universe