SUPERSYMMETRY – AN INTRODUCTION

Tilman Plehn

Max Planck Institute for Physics (upstairs)

- Fine tuning in the Standard Model
- Supersymmetry as one solution
- The MSSM
- Supersymmetry at the Tevatron and the LHC
- Supersymmetry at the Linear Collider
- and lots of little side remarks...

A brief history of the mess we are in...

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^- \bar{\nu}_e \text{ and } \mu \rightarrow e^- \bar{\nu}_e \nu_\mu]$
 - \rightarrow divergent four fermion reaction amplitude: $\mathcal{A} \propto G_F E^2$

 - \rightarrow 'effective theory' valid for E < 600 GeV
- Yukawa 1935: massive virtual particle exchange
 - \rightarrow Fermi's theory for E \ll M
 - \rightarrow four fermions unitary for large energies: $\mathcal{A} \propto g^2 E^2/(E^2-M^2)$
 - $\rightarrow \text{ unitarity violation in WW} \rightarrow \text{WW} \quad [\mathcal{A} \propto \text{G}_{\text{F}}\text{E}^2]$
- Higgs & Kibble 1967: spontaneous symmetry breaking
 - \rightarrow unitary gauge theory with massive W, Z ~~ [discovered 1983]
 - \rightarrow fermion masses linked to Yukawa couplings [top quark discoverd 1995]

 - \rightarrow Higgs couplings fixed $g_{HXX} \propto gm_X$
- $\begin{array}{ll} & \mbox{desaster strikes: scalar mass perturbatively unstable} \\ & \mbox{quadratic divergences } \delta m_{H}^2 \propto g^2 \Lambda^2 \quad \mbox{[Λ loop cutoff]} \\ & \mbox{all-orders Higgs mass driven to cutoff $m_{H} \to \Lambda$} \end{array}$

 \Rightarrow new approach needed to solve hierarchy problem

Starting from data...

- ...which seem to indicate a light Higgs
- problem of light Higgs: mass driven to cutoff of theory [remember pain to get that up] $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) \Lambda^2$ Veltman's condition (···) = 0 would be fun problem preferably solved to arbitrary loop order
- \Rightarrow solution: counter term for exact cancellation \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless/composite Higgs YourFavoriteNewPhysics...
- \Rightarrow typically either cancellation with new particles or discussing away high scale
- \Rightarrow all really beautiful concepts and symmetries
- ⇒ in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry: cancellation of divergences through statistics factor (-1) [scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]

Tilman Plehn: Supersymmetry – p.3

TEV SCALE SUPERSYMMETRY: 1

Great idea: solve hierarchy problem by only doubling particle number?!

- stops (scalar) cancel top loop [couplings also protected]
- gauginos (neutral or charged) cancel W, Z loop
- higgsinos cancel Higgs loop [mix with neutralinos]
- since we are at it, let's postulate gluino
- top not special, so postulate sleptons and squarks
- \Rightarrow hierarchy problem gone
- \Rightarrow rich collider and non-collider phenomenology guaranteed

Slight problem with Higgs sector

- adjoint Higgs field not allowed in ${\cal L}$
 - \rightarrow how to give mass to t and b?
 - \rightarrow two doublets
- \Rightarrow SUSY Higgs sector interesting by itself

[no SUSY knowledge needed]

		spin	d.o.f.	
fermion	^f L ^{, f} R	1/2	1+1	
\rightarrow sfermion	$\tilde{f}_{L}, \tilde{f}_{R}$	0	1+1	
gluon	${ t G}_{\mu}$	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ,Z	1	2+3	
Higgs bosons	h ^o , H ^o , A ^o	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	Majorana
gauge bosons	W±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}^{\pm}_{i}$	1/2	2 · 4	Dirac
graviton	G	2	5	
→ gravitino	Ĝ	3/2	5	hard to catch

Required by supersymmetry: two Higgs doublet model

- one (complex) Higgs doublet: 4 degrees of freedom \rightarrow three for longitudinal W, Z, one for scalar Higgs
- two Higgs doublets: 8 degrees of freedom \rightarrow three for longitudinal W, Z, five for Higgs particles \rightarrow scalars h⁰, H⁰, pseudoscalar A⁰, charged H[±]
- free parameters

(1) still only one free mass scale: m_A

(2) two vacuum expectation values: $\tan \beta = v_t/v_b$

Plateau structure

- only plateau Higgs coupling to W, Z
- heavy Higgs with tan β -enhanced coupling to b, τ
- light Higgs mass limited from above

$$2m_h^2 \simeq m_{AZ}^2 - \sqrt{m_{AZ}^4 - 4m_A^2 m_Z^2 c_{2\beta}^2 - 4\frac{3G_F}{\sqrt{2}\pi^2}} \frac{m_t^4}{s_\beta^2} \log \frac{m_{\tilde{t}}^2}{m_t^2} (m_A^2 s_\beta^2 + m_Z^2 c_\beta^2) \lesssim 2 \cdot 135 \text{ GeV}$$

 $\Rightarrow \text{ Little hierarchy problem } m_{\tilde{t}} \gg m_t \text{ because } m_h > 114 \text{ GeV a la LEP2}_{\text{Tilman Plehn: Supersymmetry - p.5}}$

SUPERSYMMETRIC HIGGS SECTOR: 2

Challenge: find one Higgs at the LHC [very diffi cult at Tevatron]

- $\label{eq:main} \begin{array}{l} \mbox{ 'decoupling regime' } m_A \gtrsim 160 \mbox{ GeV} \\ \rightarrow h^0 \mbox{ looks like SM Higgs } \mbox{ [of corresponding mass]} \end{array}$
- $\begin{array}{ll} & \text{opposite case } m_A \lesssim 120 \; \text{GeV} \\ & \rightarrow qq \rightarrow qq H^0 \rightarrow qq \tau \tau \; \text{as in SM} \end{array}$
- in between: maybe even two bumbs
- \Rightarrow No-lose theorem: qq \rightarrow qq{h⁰, H⁰} \rightarrow qq $\tau \tau$

SUPERSYMMETRIC HIGGS SECTOR: 2

Challenge: find one Higgs at the LHC [very diffi cult at Tevatron]

- $\label{eq:main} \begin{array}{l} \mbox{ 'decoupling regime' } m_A \gtrsim 160 \mbox{ GeV} \\ \rightarrow h^0 \mbox{ looks like SM Higgs } \mbox{ [of corresponding mass]} \end{array}$
- $\begin{array}{ll} & \text{opposite case } m_{\text{A}} \lesssim 120 \; \text{GeV} \\ \rightarrow qq \rightarrow qq \text{H}^0 \rightarrow qq \tau \tau \; \text{as in SM} \end{array}$
- in between: maybe even two bumbs
- \Rightarrow No-lose theorem: qq \rightarrow qq{h⁰, H⁰} \rightarrow qq $\tau \tau$

Nightmare: confirm SUSY Higgs sector

- decoupling regime m_A \gtrsim 160 GeV
 - \rightarrow Yukawa coupling for H⁰, A⁰, H[±]: m_b tan β
 - \rightarrow production e.g. $b\bar{b}\rightarrow H^{0}$ or $gb\rightarrow tH^{-}$
 - \rightarrow decays e.g. ${\rm H^0} \rightarrow \tau \tau, \mu \mu \text{ or } {\rm H^-} \rightarrow \tau \bar{\nu}$
- intermediate $m_A \sim 120 \text{ GeV}$:
 - \rightarrow lots of Higgs bosons h^0, H^0, A^0 observable
 - \rightarrow problem distinguishing them: ${\rm H^0} \rightarrow \mu \mu$
 - $\rightarrow top \; quark \; decays \; t \rightarrow b H^+? \quad \mbox{[Tevatron sample small]}$

Tilman Plehn: Supersymmetry - p.7

Higgs searches at the ILC

- production rate the challenge (energy), backgrounds under control
- Higgs-strahlung $e^+e^- \rightarrow Zh^0$ for SM-like Higgs pair production $H^+H^-, A^0h^0, ...$ single production WW $\rightarrow h^0, \gamma\gamma \rightarrow h^0, H^0, ...$
- precision the key

Higgs searches at the ILC

- production rate the challenge (energy), backgrounds under control
- Higgs-strahlung $e^+e^- \rightarrow Zh^0$ for SM-like Higgs pair production $H^+H^-, A^0h^0, ...$ single production WW $\rightarrow h^0, \gamma\gamma \rightarrow h^0, H^0, ...$
- precision the key

Electroweak analyses at the ILC [Wolfgang Hollik's talk]

- similar to LEP-electroweak fit
- input SUSY-Higgs, electroweak sector with SUSY loops
- logarithmic dependence on SUSY masses
- \Rightarrow measure W mass and some SUSY masses, derive A_t measure SUSY masses and tell people m_W is wrong

Tilman Plehn: Supersymmetry - p.9

SUSY particle masses

- mechanism of mass generation unknown [soft breaking leaves quadratic divergences alone]
- link to flavor physics and baryongenesis/leptogenesis unknown
- assume SUSY breaking in hidden sector
 + mediation to visible sector [gravitationally coupled, branes in extra dimensions]
- maximally blind mediation at high scale: mSUGRA scalars: m_0 , fermions: $m_{1/2}$, tri-scalar term: A_0 plus sign(μ) and tan β from Higgs sector [Higgs masses let free: NUHM]

Structures in the SUSY spectrum

- gauginos–higgsinos mixing: $m_{\tilde{\chi}_2^0} \sim m_{\tilde{\chi}_1^+}$ or $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_1^+}$ in MSSM

 $\begin{pmatrix} m_{\widetilde{B}} & 0 & -m_{Z}s_{w}c_{\beta} & m_{Z}s_{w}s_{\beta} \\ 0 & m_{\widetilde{W}} & m_{Z}c_{w}c_{\beta} & -m_{z}c_{w}s_{\beta} \\ -m_{Z}s_{w}c_{\beta} & m_{Z}c_{w}c_{\beta} & 0 & -\mu \\ m_{Z}s_{w}s_{\beta} & -m_{Z}c_{w}s_{\beta} & -\mu & 0 \end{pmatrix} \begin{pmatrix} m_{\widetilde{W}} & \sqrt{2}m_{W}s_{\beta} \\ \sqrt{2}m_{W}c_{\beta} & -\mu \end{pmatrix}$

stop and sbottom mixing in MSSM

$$\begin{pmatrix} \mathsf{m}_{\mathsf{Q}}^{2} + \mathsf{m}_{\mathsf{t}}^{2} + \left(\frac{1}{2} - \frac{2}{3}\mathsf{s}_{\mathsf{w}}^{2}\right)\mathsf{m}_{\mathsf{Z}}^{2}\mathsf{c}_{2\beta} & -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) \\ -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) & \mathsf{m}_{\mathsf{U}}^{2} + \mathsf{m}_{\mathsf{t}}^{2} + \frac{2}{3}\mathsf{s}_{\mathsf{w}}^{2}\mathsf{m}_{\mathsf{Z}}^{2}\mathsf{c}_{2\beta} \end{pmatrix}$$

– heavy gluinos and squarks through unification: $m_{{\tilde B},{\tilde W},{\tilde g}}/m_{1/2} \sim 0.4, 0.8, 2.6$ $m_{{\tilde \ell},{\tilde q}}/m_{1/2} \sim 0.7, 2.5 \ [m_0 \ll m_{1/2}]$

[mass and coupling unification independent]

- lightest SUSY partner $\tilde{\chi}_1^0, \tilde{\nu} \Rightarrow \text{ after dark matter data } \tilde{\chi}_1^0 \sim \tilde{B}, \tilde{W} \text{ [gravitinos?]}$

- gauge couplings run: $g_{U(1)}, g_{SU(2)}, g_{SU(3)}$
- remember observed running of α_s
- running described as $\mu dg/d\mu = \beta_g$
- beta functions from particle content
- at one loop $\beta(n_H, n_s, n_f, ...)$

 $[\beta_{SQCD} = 11/3N - 2/3N - 2/3n_f - 1/3n_s]$

- gauge couplings run: $g_{U(1)}, g_{SU(2)}, g_{SU(3)}$
- remember observed running of α_s
- running described as $\mu dg/d\mu = \beta_g$
- beta functions from particle content
- at one loop $\beta(n_H, n_s, n_f, ...)$

 $[\beta_{SQCD} = 11/3N - 2/3N - 2/3n_f - 1/3n_s]$

Unification of mass parameters

- parameters which gets renormalized run because of $\mu^{2\epsilon} \int dq^{4-2\epsilon}$
- Standard Model masses run: $m_b, m_t, m_{\tilde{g}}, ...$
- SUSY-breaking parameters run: $m_{\widetilde{g}}, m_{\widetilde{B}}, m_{\widetilde{W}}, ...$
- \Rightarrow insight into SUSY breaking at some scale?

- gauge couplings run: $g_{U(1)}, g_{SU(2)}, g_{SU(3)}$
- remember observed running of α_s
- running described as $\mu dg/d\mu = \beta_g$
- beta functions from particle content
- at one loop $\beta(n_H, n_s, n_f, ...)$

 $[\beta_{SQCD} = 11/3N - 2/3N - 2/3n_f - 1/3n_s]$

Unification of mass parameters

- parameters which gets renormalized run because of $\mu^{2\epsilon} \int dq^{4-2\epsilon_{100}}$
- Standard Model masses run: $m_b, m_t, m_{\tilde{g}}, ...$
- SUSY-breaking parameters run: $m_{\widetilde{g}}, m_{\widetilde{B}}, m_{\widetilde{W}}, ...$
- \Rightarrow insight into SUSY breaking at some scale?

- gauge couplings run: $g_{U(1)}, g_{SU(2)}, g_{SU(3)}$
- remember observed running of α_s
- running described as $\mu dg/d\mu = \beta_g$
- beta functions from particle content
- at one loop $\beta(n_H, n_s, n_f, ...)$

 $[\beta_{SQCD} = 11/3N - 2/3N - 2/3n_f - 1/3n_s]$

Unification of mass parameters

- parameters which gets renormalized run because of $\mu^{2\epsilon} \int dq^{4-2\epsilon} e^{0.2}$
- Standard Model masses run: $m_b, m_t, m_{\tilde{g}}, ...$
- SUSY-breaking parameters run: $m_{\widetilde{g}}, m_{\widetilde{B}}, m_{\widetilde{W}}, ..$
- \Rightarrow insight into SUSY breaking at some scale?

TEV SCALE SUPERSYMMETRY: 5

Supersymmetric parameter conventions

- comparison of specialized codes crucial [remember: e.g. Comphep-Pythia-Isajet]
- \Rightarrow fix SUSY conventions once for all

soft breaking parameters [e.g. $\pm A_t$] scale dependence of couplings, masses [e.g. m(q = TeV, v, m_t)?] definitions of mass matrixes, mixing angles [e.g. $\tilde{t}_{L,R}$ up or down?]

SUSY Les Houches Accord [P. Skands et al.]

- spectrum generators: SoftSusy, SPheno, FeynHiggs,...
- multi-purpose Monte Carlos: Pythia, Herwig, Sherpa
- matrix element generators: Whizard, Smadgraph
- NLO cross sections: Prospino2
- NLO decay rates: Sdecay
- SUSY parameter extraction: Fittino, Sfitter
- dark matter: Micromegas
- ⇒ fixed parameter convention and read-write format [list to be extended]

R PARITY

Problem with proton decay

- SUSY allows vertices like $qq\tilde{q}, q\ell\tilde{q}, \ell\ell\tilde{\ell}$
- problem with dimension-4 proton decay
- problem with leptoquark-type constraints: atomic parity violation
- problem with $(e \mu)$ conversion
- problem with K and B decays and mixing
- ⇒ define ad-hoc multiplicative quantum number $R = (-1)^{2S-L+3B}$

[+1 for SM, -1 for SUSY partners, +1 for Higgses]

Impact on collider phenomenology

- every vertex involving 2 or 4 SUSY partners
- no single SUSY-partner production
- lightest SUSY partner stable (LSP)
- stable LSP at the end of each cascade
- ⇒ SUSY searches always for leptons+jets+missing energy [no pure Q

[no pure QCD backgrounds]

p

Dark matter [Georg Raffelt's talk]

- total matter density same as critial density
- observed (baryonic) matter much less
- light neutrinos too relativistic to match equation of state
- rotation of galaxies too fast (only explained by additional matter)
- cannot have charge or strong interaction, because of missing evidence

SUSY candidates with conserved R parity

- Weakly Interacting Massive Particles at weak scale fine
- sneutrinos excluded by searches
- lightest neutralino prime candidate
- thermally produced in equilibrium, then frozen out
- annihilation $\tilde{\chi}\tilde{\chi} \rightarrow f\bar{f}$ necessary s-channel annihilation through A⁰ at large tan β ? co-annihilation $\tilde{\chi}\tilde{\tau} \rightarrow Z\tau$ helpful?
- \Rightarrow few observables in a large parameter space, though

Tilman Plehn: Supersymmetry – p.18

Conversion of energy into mass $[E = mc^2 \text{ with } c=1]$

- search for new particles [easier if real particle produced]
 → highest possible energies required
- electron colliders: collide two highly relativistic e LEP: 46 GeV each to produce Z LEP2: 103 GeV each for e.g. ZH ILC/CLIC: 1...4 TeV in the future
- hadron colliders: collide (anti)protons Tevatron: pp̄ collision with 2 TeV [valence quarks] LHC: pp collisions with 14 TeV [gluons]
- LHC mass reach \sim 3 TeV [trade luminosity for energy]

New physics with hadron colliders

- what is a jet and what is inside? [bottom tag, τ tag]
- trigger: 'no leptons no data' [e.g. $pp \rightarrow t\bar{t} \rightarrow jets$]
- backgrounds rates $pp \rightarrow jj \text{ or } pp \rightarrow WZ+jets$
- statistical significance: $S/\sqrt{B} > 5$ is discovery

Tilman Plehn: Supersymmetry – p.19

Promising SUSY channels at the Tevatron

– until now: best limit $m(\tilde{\chi}^+) > 103$ GeV from LEP

[captures essentially all leptons+LSP channels]

- strongly interacting squarks and gluinos $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\tilde{q}) \sim m(\tilde{g})$]
- decays to jets and LSP and $\tilde{g} \rightarrow \tilde{q}\bar{q}, \tilde{q}_L \rightarrow q \tilde{\chi}_2^0, \tilde{q}_R \rightarrow q \tilde{\chi}_1^0$ additional jets and leptons possible
- \Rightarrow search as inclusive as possible

Necessary model assumptions

- assume 100% branching into inclusive jets+LSP
- for detector efficiencies $m(\tilde{\chi}_2^0), ...$
- gluino decay into squark or vice versa?
- ⇒ mSUGRA assumed, but effect moderate

More specialized: trilepton channels

- generally assumed that charginos are lighter than aluinos
- largest cross section $p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0$ decays $\tilde{\chi}_1^+ \rightarrow \ell^+ \nu \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$
- gaugino rate determined by t channel squark
- trilepton signature plagued by W, Z background
- \Rightarrow about to pass LEP chargino limits

More specialized: trilepton channels

- generally assumed that charginos are lighter than aluinos
- largest cross section $p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0$ decays $\tilde{\chi}_1^+ \rightarrow \ell^+ \nu \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$
- gaugino rate determined by t channel squark
- trilepton signature plagued by W, Z background
- \Rightarrow about to pass LEP chargino limits

Even more specialized: long-lived gauginos

- stable on the detector time scale of ns
- like massive muons in tracker—muon chamber
- gauginos motivated by GMSB or AMSB

TEVATRON: B PHYSICS AND SUPERSYMMETRY

Tevatron channel: $B_s \rightarrow \mu \mu$

- more Higgs bosons in 2HDM tan β enhancement of s channel Higgses [BR_{2HDM} \propto tan⁶ β /m⁴_A] additional Higgs loop
- charginos in MSSM
 tan β enhancement for Higgsinos
 gluino loop for non-minimal flavor physics...

Bottom Yukawa in the MSSM

- gluino-sbottom loops universal: $y_b \rightarrow y_b/(1 + \Delta_b)$
- large, leading in tan β & resummable $\Delta_b \sim \alpha_s$ tan $\beta m_{\tilde{g}} \mu/max^2(m_{\tilde{b},\tilde{g}})$
 - \Rightarrow decoupling in MSSM, but not in MSSM+ μ

[similar terms for chargino/neutralino exchange]

- easy to implement in MC, numerically great for $\tan \beta > 10$
- \Rightarrow enhancement good for SUSY signals, but pain in analyses

Supersymmetry at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking

Supersymmetry at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking

500

Spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 3×10^5 events]
- thresholds & edges classical $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^{\widetilde{g}}$
- detector resolution, calibration, systematic errors, shape analysis?
- cross sections as additional input?
- \Rightarrow \tilde{q}_L cascade reconstruction great for SPS1a

ã

μ

Spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 3×10^5 events]
- thresholds & edges classical $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^{\widetilde{\zeta}^\vee}$ §
- detector resolution, calibration, systematic errors, shape analysis?
- cross sections as additional input?
- ⇒ q̃_L cascade reconstruction great for SPS1a [mass differences better]

ã

u

Gluino mass

- now four jets instead of two
- \tilde{b}_{L} instead, all jets b-tagged
- ⇒ gluino mass to ~ 1% statistical error dominant

How to make sure it is SUSY

- assume neutralino is found in cascades
- compare with a model where gluino is a boson,...
- \rightarrow straw man: universal extra dimensions

[mass spectra degenerate —ignore this information; cross section factor 10 larger —ignore this as well]

Slepton cascade

- decay chain $\tilde{\chi}^0_2 \rightarrow \ell \tilde{\ell}^* \rightarrow \ell \bar{\ell} \tilde{\chi}^0_1$
- compare with first excited Z and ℓ
- typically largest $pp \rightarrow \tilde{q}\tilde{g}$ [$\tilde{q}/\tilde{q} \sim 2$]
- $\Rightarrow \widehat{\mathbf{m}} = \mathbf{m}_{j\ell} / \mathbf{m}_{j\ell}^{\text{max}} \text{ most promising}$ $\mathcal{A} = [\sigma(j\ell^+) \sigma(j\ell^-)] / [\sigma(j\ell^+) \sigma(j\ell^-)]$
 - assume hierarchical SPS1a spectrum
 [dashed SUSY, solid UED]
- \Rightarrow we can tell spin in cascade

How to make sure it is SUSY

- assume neutralino is found in cascades
- compare with a model where gluino is a boson,...
- straw man: universal extra dimensions

[mass spectra degenerate —ignore this information; cross section factor 10 larger —ignore this as well]

Slepton cascade

- decay chain $\tilde{\chi}_2^0 \to \ell \tilde{\ell}^* \to \ell \bar{\ell} \tilde{\chi}_1^0$
- compare with first excited Z and ℓ
- typically largest pp $\rightarrow \tilde{q}\tilde{g}$ [$\tilde{q}/\tilde{q} \sim 2$]
- $\hat{m} = m_{i\ell}/m_{i\ell}^{max}$ most promising \Rightarrow $\mathcal{A} = [\sigma(j\ell^+) - \sigma(j\ell^-)] / [\sigma(j\ell^+) - \sigma(j\ell^-)]$
 - assume non-hierarchical UED spectrum [dashed SUSY, solid UED]
- we can tell spin in cascade

SUPERSYMMETRY AT THE ILC: 1

All information in the kinematics

- very high luminosity: 1 ab^{-1}
- excellent mass resolution to reject backgrounds
- mass determination from energy spectrum

$$m_{\tilde{\ell}} = \sqrt{s} \sqrt{E_{+}E_{-}}/(E_{+}+E_{-})$$
$$m_{\tilde{\chi}_{1}^{0}} = m_{\tilde{\ell}} \sqrt{1-2(E_{+}+E_{-})/\sqrt{s}}$$

- higher-order/off-shell corrections necessary
- \Rightarrow mass determination to better than 0.2%

Similarly good: threshold scan

- required luminosity around 100 fb^{-1} per particle
- theoretical threshold description: what mass?
- necessary for example for $\tilde{\chi}_1^0 \nu$ in decay
- \Rightarrow mass determination to better than 0.5%

Tilman Plehn: Supersymmetry - p.30

SUPERSYMMETRY AT THE ILC: 2

Renormalization group bottom-up

- high–scale parameters without assumptions?
- all parameters in beta functions necessary neutralino/chargino sector from ILC (NLO) gluino mass from LHC
- gaugino mass unification 'SUGRA light'

Slepton masses more involved

- again test of unified masses
- quark flavor crucial input
- slepton mass running flat
 squark mass determination weak
 u-d-s-c flavor tagging in squark decays

SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses
 branching fractions
 cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum

Combination of methods

- (1) grid for closed subset
 (2) fit of remaining parameters
 (3) complete fit
- more modern alternaives: simulated annealing Markov Chains
- \Rightarrow LHC+ILC with no assumptions

	LHC	ILC	LHC+ILC	SPS1a
$tan\beta$	10.22 ± 9.1	10.26 ± 0.3	10.06 ± 0.2	10
M ₁	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67 \pm 15	fi x 500	588.05 ± 11	589.4
$M_{\tilde{\tau}_1}$	fi x 500	197.68 ± 1.2	199.25 ± 1.1	197.8
$M_{\tilde{\tau}_{R}}$	129.03 ± 6.9	135.66±0.3	133.35±0.6	135.5
$M_{\tilde{\mu}_{L}}$	198.7±5.1	198.7±0.5	198.7±0.5	198.7
M _{~q31}	498.3±110	497.6±4.4	521.9 ± 39	501.3
M _{ťp}	fi x 500	420±2.1	411.73±12	420.2
M _{õR}	522.26±113	fi x 500	504.35±61	525.6
A_{τ}	fi x 0	-202.4 ± 89.5	352.1 ± 171	-253.5
At	-507.8 ± 91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7 ± 35603	fi x 0	-977 ± 12467	-799.4

SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

First go at problem

- ask a friend who knows how SUSY is broken
- \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(mu)$
- no problem, include indirect constraints
- \Rightarrow who would bet a month's salary on mSUGRA?
- admittedly: mSUGRA a very useful testing ground for methods

SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

First go at problem

- ask a friend who knows how SUSY is broken
- \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(mu)$
- no problem, include indirect constraints
- \Rightarrow who would bet a month's salary on mSUGRA?
- admittedly: mSUGRA a very useful testing ground for methods

OUTLOOK

Supersymmetry a good solution to hierarchy problem

- dark matter motivation getting stronger
- no hint of SUSY-flavor physics
- Tevatron searches promising put tough
- LHC searches much more powerful
- ILC analyses perfect tool, luminosity the issue
- \Rightarrow Super-cool times ahead