Data Processing (Datenverarbeitung)

- 1 Statistics I
- 2 Statistics II
- 3 OOAD for Physics Programming I
- 4 OOAD for Physics Programming II

37. Herbstschule für Hochenergiephysik 2005

Maria Laach

Stefan Kluth Max-Planck-Institut für Physik Föhringer Ring 6 D-80805 München skluth@mppmu.mpg.de

Overview

- Statistics I
 - foundations, error calculus
- Statistics II

- Monte Carlo, parameter estimation, unfolding

• OOAD I

- complex systems, object model

• OOAD II

- dependency management, class design

2

1 Basics

- Sample space S is a set
- Subset A of S has probability P(A)
 - for all A in S: $P(A) \ge 0$
 - for A, B disjoint: $P(A \cup B) = P(A) + P(B)$
 - P(S) = 1
- From this
 - $P(\underline{A}) = 1 P(A)$ with \underline{A} complement of A
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $P(A | B) = P(A \cap B) / P(B)$

1 Bayes Theorem

Consider conditional probabilities P(A | B) and P(B | A)

 $P(A | B) = P(A \cap B) / P(B)$

 $P(B \mid A) = P(B \cap A) / P(A)$

With $P(A \cap B) = P(B \cap A)$ one gets:

 $P(A | B) = P(B | A) \cdot P(A) / P(B)$ Bayes Theorem

P(A) is called prior probability

1 Example

Disease carried by P(yes) = 0.001 of population; test for desease with binary outcomes + and – with P(+|yes) = 0.98, P(+|no) = 0.03

Probability to have desease if tested positive using Bayes theorem:

P(yes|+) = P(+|yes) P(yes) / P(+)

P(+) = P(+ | yes) P(yes) + P(+ | no) P(no)

P(yes | +) = $0.98 \cdot 0.001$ / ($0.98 \cdot 0.001$ + $0.03 \cdot 0.999$) = 0.032

Why P(yes|+) so small? Prior probability P(yes) is small and thus contribution from false positives P(+|no) dominates

1 Frequentist Statistics

- Probability is relative frequency
 - $P(A) = \lim_{N \to \infty} n(A) / N$ with n times result A in N tries (experiments)
 - $P(A | B) = n(A \cap B) / n(B)$
- Corresponds well to quantum processes
 - predictions for ensembles, not single events
 - limited samples imply statistical uncertainties
 - correspondence estimator \leftrightarrow true value

1 Bayesian Statistics

- Hypothesis testing
 - sample space consists of hypotheses
 - P(A) probability that hypothesis A correct
 - $P(A) = \lim_{N \to \infty} n(A) / N$ is also a hypothesis
- Bayes theorem relates hypothesis and data
 - P(theory | data) ~ P(data | theory) P(theory)
 - prior probability P(theory) subjective
 - Desease testing:
 - $P(yes) = 0.1 \Rightarrow P(yes \mid +) = 0.78$
 - $P(yes) = 0.001 \Rightarrow P(yes | +) = 0.03$

2 Probability Density Functions

PDFs are functions of continuous random variables:

 $- P(x \in [x', x'+dx]) = f(x')dx$

• Normalisation:

 $-\int_{S} f(x) dx = \int_{-\infty}^{\infty} f(x) dx = 1$

• Cumulative distribution:

 $-F(x') = \int_{-\infty}^{x'} f(x) dx = P(x \le x')$

8

2 Mean, Variance, Covariance

Expectation value of random variable x (mean) defined as

 $\mathbf{E}[\mathbf{x}] = \int_{-\infty}^{\infty} \mathbf{x} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \mu_{\mathbf{x}}$

Variance of x is $E[(x - \mu_x)^2]$:

 $var(x) = E[(x - \mu_x)^2] = \int_{-\infty}^{\infty} (x - \mu_x)^2 f(x) dx = E[x^2] - \mu_x^2$ $\sigma_x = \sqrt{var(x)}$

Covariance is $E[(x - \mu_x)(y - \mu_y)]$:

$$cov(x,y) = E[(x - E[x])(y - E[y])] = E[xy] - \mu_x \mu_y$$
$$= \iint xy f(x,y) dxdy - \mu_x \mu_y$$

2 Statistical Estimators

Estimators of expectation values in finite samples:

 $\begin{array}{ll} \text{Mean:} & \langle \mathbf{x} \rangle = 1/n \sum_{i=1}^{n} \mathbf{x}_{i} & \mathbf{E}[\langle \mathbf{x} \rangle] = \mu_{\mathbf{x}} \\ \text{Variance:} & \langle var(\mathbf{x}) \rangle = n/(n-1) \left(\langle \mathbf{x}^{2} \rangle - \langle \mathbf{x} \rangle^{2} \right) & \mathbf{E}[\langle var(\mathbf{x}) \rangle] = var(\mathbf{x}) \\ \text{Covariance:} & \langle cov(\mathbf{x},\mathbf{y}) \rangle = n/(n-1) \left(\langle \mathbf{x}\mathbf{y} \rangle - \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \right) & \mathbf{E}[\langle cov(\mathbf{x},\mathbf{y}) \rangle] = cov(\mathbf{x},\mathbf{y}) \\ \text{Weak law of large numbers:} & \langle \mathbf{x} \rangle \text{ is consistent estimator of } \mu_{\mathbf{x}} \text{ if } \\ & var(\mathbf{x}) \text{ exists} \\ \end{array}$

Correlation coefficient: $\rho_{xy} = cov(x,y)/(\sigma_x \sigma_y)$ with $-1 < \rho_{xy} < 1$

3 Multinomial Distribution

In particle physics we "count events", i.e. measure frequencies of outcomes and apply frequentist statistics to extract parameters

For N measured values of random variable x normalised histogram with m bins $[x_i, x_i + \Delta x]$ and n_i entries per bin is described by multinomial pdf:

$$f_{M}(\vec{n}, N; \vec{p}) = \frac{N!}{\prod_{i=1}^{m} (n_{i}!)} \prod_{i=1}^{m} p_{i}^{n_{i}}$$

Estimator for p_i : Variance of p_i : Covariance of p_i :

$$\langle \mathbf{p}_i \rangle = \mathbf{n}_i / \mathbf{N} \\ \langle \operatorname{var}(\mathbf{p}_i) \rangle = \langle \mathbf{p}_i \rangle (\mathbf{1} - \langle \mathbf{p}_i \rangle) / \mathbf{N} \\ \langle \operatorname{cov}(\mathbf{p}_i, \mathbf{p}_j) \rangle = - \langle \mathbf{p}_i \rangle \langle \mathbf{p}_j \rangle / \mathbf{N} \text{ for } i \neq j$$

3 Poisson Distribution

3 Gauss Distribution

Normal or Gaussian distribution with mean μ and variance σ :

$$f_{_{\rm C}}({\rm x};\mu,\sigma) = 1/\sqrt{(2\pi\sigma^2)} \exp(-0.5 (({\rm x-}\mu)/\sigma)^2)$$

$$\lim_{n\to\infty} \mathbf{f}(\mathbf{X}) = \mathbf{f}_{\mathbf{G}}(\mathbf{X}; \sum_{i=0}^{n} \boldsymbol{\mu}_{i}, \sum_{i=0}^{n} \boldsymbol{\sigma}_{i}^{2})$$

For $\mathbf{x} = (x_1, ..., x_n)$ with covariance matrix $V = (cov(x_i, x_j))$ and expectation values $\boldsymbol{\mu} = (\mu_1, ..., \mu_n)$:

 $f_{_{G}}(\mathbf{x};\boldsymbol{\mu},\,V) = 1/\sqrt{((2\pi)^{n} \,|\, V\,|\,)} \exp(\text{ - }0.5\;(\mathbf{x}\textbf{-}\boldsymbol{\mu})^{\mathrm{T}}\,V^{\textbf{-}1}\;(\mathbf{x}\textbf{-}\boldsymbol{\mu})\;)$

$3 \chi^2$ Distribution

The χ^2 distribution of a continous random variable z:

$$f_{\chi}(z; n) = z^{n/2-1} e^{-z/2} / (2^{n/2} \Gamma(n/2))$$

Parameter n often called "number of degrees of freedom (d.o.f.)

Mean E[z] = n and Variance var(z) = 2n

Important property:

$$\chi^2 = (\mathbf{x} - \boldsymbol{\mu})^T \cdot V^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}) \text{ or } \chi^2 = \sum_i ((x_i - \mu_i)/\sigma_i)^2 \text{ if cov. matrix V diagonal}$$

follows $F_{\chi}(z; n) \rightarrow$ Hypothesis tests and parameter estimation

4 Error Calculus

Measurement errors of correlated and/or derived quantities

Measurements and errors described by random variables $\mathbf{x} = (x_1, ..., x_n)$ with covariance matrix $V = (cov(x_i, x_j))$ and expectation values $\boldsymbol{\mu} = (\mu_1, ..., \mu_n)$

Derived quantities: $\mathbf{y} = \mathbf{y}(\mathbf{x}) = (y_1(\mathbf{x}), ..., y_m(\mathbf{x})); m \le n$

Taylor expansion: $\mathbf{y}(\mathbf{x}) = \mathbf{y}(\boldsymbol{\mu}) + (d/d\mathbf{x} \cdot \mathbf{y}(\boldsymbol{\mu})^{\mathrm{T}})^{\mathrm{T}} \cdot (\mathbf{x} \cdot \boldsymbol{\mu})$

Jacobi matrix $(d/d\mathbf{x} \cdot \mathbf{y}(\boldsymbol{\mu})^T)^T = J$ describes changes in \mathbf{y} due to deviations of measurements \mathbf{x} from expectation values $\boldsymbol{\mu}$. Elements of J are $J_{ij} = dy_j/dx_i$

4 Error Calculus

Covariance matrix W of **y** given by V and J:

$$W = E[cov(\mathbf{y})] = E[\mathbf{y} \cdot \mathbf{y}^{T}] - E[\mathbf{y}] \cdot E[\mathbf{y}]^{T}$$

$$\mathbf{E}[\mathbf{y}] = \mathbf{E}[\mathbf{y}(\boldsymbol{\mu})] + \mathbf{J} \cdot \mathbf{E}[(\mathbf{x} \cdot \boldsymbol{\mu})] = \mathbf{y}(\boldsymbol{\mu})$$

$$E[\mathbf{y} \cdot \mathbf{y}^{\mathrm{T}}] = E[(\mathbf{y}(\boldsymbol{\mu}) + J \cdot (\mathbf{x} - \boldsymbol{\mu})) \cdot (\mathbf{y}(\boldsymbol{\mu}) + J \cdot (\mathbf{x} - \boldsymbol{\mu}))^{\mathrm{T}}]$$

= $\mathbf{y}(\boldsymbol{\mu}) \cdot \mathbf{y}(\boldsymbol{\mu})^{\mathrm{T}} + J \cdot E[(\mathbf{x} - \boldsymbol{\mu}) \cdot (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}] \cdot J^{\mathrm{T}}$

 $W = J \cdot V \cdot J^{\mathrm{T}}$

W is orthogonal transformation of V given by J Errors of **y** given by diagonal elements of W

4 Error calculus examples

Error of product $y = x_1 x_2$:

$$W = J \cdot V \cdot J^{T} = (x_{2} \quad x_{1}) \cdot \begin{pmatrix} \sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2} \end{pmatrix} \cdot \begin{pmatrix} x_{2} \\ x_{1} \end{pmatrix} = x_{2}^{2} \sigma_{1}^{2} + x_{1}^{2} \sigma_{2}^{2} + 2 x_{1} x_{2} \rho \sigma_{1} \sigma_{2} \\ \left(\frac{\sigma_{y}}{y} \right)^{2} = \left(\frac{\sigma_{1}}{x_{1}} \right)^{2} + \left(\frac{\sigma_{2}}{x_{2}} \right)^{2} + \frac{2 \rho \sigma_{1} \sigma_{2}}{x_{1} x_{2}}$$

Error of sum $y = a_1 x_1 + a_2 x_2$:

$$W = J \cdot V \cdot J^{T} = (a_{1} \quad a_{2}) \cdot \begin{pmatrix} \sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2} \end{pmatrix} \cdot \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = a_{1}^{2} \sigma_{1}^{2} + a_{2}^{2} \sigma_{2}^{2} + 2 a_{1} a_{2} \rho \sigma_{1} \sigma_{2}$$
$$\sigma_{y}^{2} = (a_{1} \sigma_{1})^{2} + (a_{2} \sigma_{2})^{2} + 2 a_{1} a_{2} \rho \sigma_{1} \sigma_{2}$$

17

4 Error Interpretation

For normal distributed variables x errors σ_x^2 correspond to variance of Gaussian. By central limit theorem sum of many errors² also follows Gaussian. Coverage probability 1 - α given by $f_{\gamma}(\chi^2, n)$ with $\chi^2 = \delta/\sigma$

5 Monte Carlo Methods

Monte Carlo: Simulation of physical processes with probability density functions (pdf) and random numbers

$$f(t;\tau) = \frac{1}{\tau} e^{-\frac{t}{\tau}}$$

Example decays:

generate t_i such that distribution of t_i follows $f(t; \tau)$

Random numbers: $n_{i+1} = mod(a \cdot n_i, m)$ a = 40692, m = 2147483399 n_0 is seed, determines sequence of n_i \rightarrow pseodo random numbers

19

5 Simulation of pdfs: Transformation method

Random variable $r \in [0,1]$ uniform, transformed variable x(r) distributed according to f(x)

$$u(r)dr = f(x(r)) \cdot dx$$

$$\rightarrow \int_{-\infty}^{r} u(r')dr' = r = \int_{-\infty}^{x(r)} f(x)dx \qquad \text{draw r, evaluate } \mathbf{F}^{-1}(\mathbf{r})$$

$$\rightarrow x(r) = F^{-1}(r) \qquad \Rightarrow x \text{ distributed as } f(x)$$

Example: exponential distribution

$$f(t;\tau) = \frac{1}{\tau} e^{-\frac{t}{\tau}} \to r = F(t) = \int_0^t \frac{1}{\tau} e^{-\frac{t'}{\tau}} dt' = 1 - e^{-\frac{t}{\tau}}$$
$$t = -\tau \log(1 - r)$$

5 Hit-or-miss Method

Problem: f(x) in $[x_1, x_2]$, want x distributed as f(x)

- 1) Generate r_1 in [0,1] $x = x_1 + r(x_2 - x_1)$
- 2) Generate r_2 in [0,1] $f_r = r_2 f_{max}$, accept if $f_r < f(x)$, or go back to 1)

+: universal algorithm -: inefficient when $f_{max} \gg f_{min}$

21

5 Physics and Detector Simulation

Physics simulation:

Generation of 4-vectors, lifetimes final states etc. following known pdfs from theory, model or data

Example:event generators PYTHIA and HERWIG $e^+e^- \rightarrow (Z/\gamma)^*(\gamma) \rightarrow q\underline{q}(g)$ \rightarrow parton shower

→ hadron/lepton decays

Detector simulation: Response of apparatus to 4-vectors from generator

5 Parametric Detektor Simulation

Measurement uncertainties parametrised \rightarrow Simulation via "smearing" of input quantities

Example: simulation of tracking resolution

 $\frac{\sigma_{p_t}}{p_t} = \sqrt{0.02^2 + (0.0015 \cdot p_t [GeV])^2} \qquad \text{(OPAL} \\ \text{Jet chamber)}$

for given $\boldsymbol{p}_{_{\mathrm{t}}}$ simulate gaussian distribution:

$$\mathbf{p}_{t}' = \mathbf{p}_{t} + \Delta \mathbf{p}_{t}$$

Use p_t' in following calculations

$$f(\Delta p_t) \sim e^{-\frac{1}{2} \left(\frac{\Delta p_t}{\sigma_{P_t}}\right)^2} \rightarrow \Delta p_t$$

5 Detailed Detector Simulation

Detector geometry: sensitive (active) elements and passive material

Detectorsimulation in dataflow of OPAL

5 Example: GOPAL

[All92]

6 Event Selection: Cuts

Find ϵ and p from MC simulation of physics processes und detector response

Pragmatic approach: optimise $\epsilon \cdot p$

6 Likelihood Ratio

Construct test variables $\mathbf{x} = (x_1, ..., x_n)$ from reconstructed events (detector level): number of tracks, number of calorimeter objects, event shapes, total energy, vertices, etc.

Neyman-Pearson acceptance region optimises p for given ε :

$$t_L(\vec{x}) = \frac{g(\vec{x}; H_0)}{g(\vec{x}; H_1)} > c(\epsilon)$$

 $g(\mathbf{x} | \mathbf{H}_0)$ and $g(\mathbf{x} | \mathbf{H}_1)$ from MC simulation with events of class 1 or 2 as multidimensional histograms \rightarrow scales like mⁿ

27

6 Fisher Discriminant

Construct test variable t_F as linear function of **x** with expectation values $E[\mathbf{x}] = \boldsymbol{\mu}_k$ and covariance matrix V_k under hypothesis k

$$t_F(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$$
 with $E[t]_k = \mathbf{a} \cdot \boldsymbol{\mu}_k$ and $\sigma_k^2 = \mathbf{a}^T \cdot V_k \cdot \mathbf{a}$

Maximise separation between two hypothesis 0 and 1:

$$\mathbf{J}(\mathbf{a}) = (\mathbf{E}[\mathbf{t}]_{0} - \mathbf{E}[\mathbf{t}]_{1})^{2} / (\sigma_{1}^{2} + \sigma_{2}^{2}) = (\mathbf{a} \cdot (\boldsymbol{\mu}_{0} - \boldsymbol{\mu}_{1}))^{2} / (\mathbf{a}^{T} \cdot (\mathbf{V}_{0} + \mathbf{V}_{1}) \cdot \mathbf{a})$$

$$dJ/da = \mathbf{0} \Rightarrow (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1) - c(V_0 + V_1) \cdot \mathbf{a} = \mathbf{0} \Rightarrow \mathbf{a} = 1/c \ (V_0 + V_1)^{-1} \cdot (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)$$

Coefficients **a** determined from $E[\mathbf{x}] = \boldsymbol{\mu}_k$ and V_k in training samples. **x** normal under hypotheses 0 and $1 \Rightarrow t_F(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$ as good as $t_L(\mathbf{x})$

6 Neural Networks

(a)

(X)1 Q

(b)

Two Layer Perceptron

Linear combination

Modeling of non-linear effects via hidden layer

$$t_{SL}(\vec{x}) = s \left(a_0 + \sum_{i=1}^n a_i x_i \right) \qquad t_{TL}(\vec{x}) = s \left(a_0 + \sum_{i=1}^m a_i s \left(w_{i0} + \sum_{j=1}^n w_{ij} x_j \right) \right)$$

 $s(z) = \frac{1}{1 + e^{-z}}$ Activation function

 $\begin{array}{l} \mbox{Training:find a_i und $w_{_{ij}}$ using training samples of class 1 or 2$ usually from MC simulation} \end{array}$

29

7 Parameter Estimation

Adjust theory or model with free parameters to data by finding optimal values of the parameters

e.g. lifetimes: N measurements t_i , theory is:

$$f(t;\tau) = \frac{1}{\tau} e^{-\frac{t}{\tau}}$$

event shapes:

apes: distributions of event shape observables in e⁺e⁻ → hadrons predictions by QCD, free parameter is strong coupling constant $\alpha_{s}(M_{z})$

 $1/\sigma d\sigma/dy = dA/dy \alpha_s(M_z) + dB/dy \alpha_s(M_z)^2$

7 Maximum Likelihood

Physical theory or model with pdf f(x, **a**); **x** are measurements, **a** are free parameters

 $L = \prod_{i=1}^{n} f(x_i, \vec{a}) dx_i$ Total probability to obtain measurements x_i if x distributed according to pdf f(x, **a**)

7 ML Example: Lifetime

Measurements of lifetimes t_{t_i} distributed like $f(t; \tau) = 1/\tau e^{-t/\tau}$

7 ML with Histogram: binned ML

$$v_i(\vec{a}) = n_{tot} \cdot \int_{x_i}^{x_i + \Delta x} f(x, \vec{a}) dx$$

Expectation of theory/model with pdf f(x, **a**) for frequency in interval $[x_i, x_i + \Delta x_i]$ (bin i)

$$L(n_1, \dots, n_N; v_1, \dots, v_N; \vec{a}) \sim \prod_{i=1}^{N} \left(\frac{v_i(\vec{a})}{n_{tot}} \right)^{n_i}$$
Likelihood to observe histogram with frequencies n_i given v_i

$$\log L = \sum_{i=1}^{N} n_i \log(v_i(\vec{a}))$$

Maximum of log L \rightarrow optimal parameters **a**

33

7 Least Squares

Consider N random variables $\mathbf{y} = (\mathbf{y}_1, ..., \mathbf{y}_n)^{\mathbf{y}}$ with normal pdf and theory/model $\mathbf{y} = \lambda(\mathbf{a})^{\mathbf{y}}$ $f(\vec{y}, \vec{\sigma}_y; \vec{a}) \sim \prod_{i=1}^{N} e^{-\frac{(y_i - \lambda_i(\vec{a}))^2}{2\sigma_{y_i}^2}} = -\frac{1}{2}\chi^2(\vec{a})^{\mathbf{x}}$ $\log L(\vec{a}) = -\frac{1}{2}\sum_{i=1}^{N} \frac{(y_i - \lambda_i(\vec{a}))^2}{\sigma_{y_i}^2} = -\frac{1}{2}\chi^2(\vec{a})^{\mathbf{x}}$ $V_{\vec{a}} = -\frac{1}{2}\left(\frac{\partial^2 \chi^2(\vec{a})}{\partial a_i \partial a_j}\right)^{-1}$ χ^2 follows χ^2 -distribution σ_a given by $\chi^2 = \chi^2_{\min} + 1$

N normal and correlated variables \rightarrow N-dimensional Gaussian $\chi^{2}(\vec{a}) = (\vec{y} - \vec{\lambda}(\vec{a}))^{T} \cdot V_{\vec{y}}^{-1} \cdot (\vec{y} - \vec{\lambda}(\vec{a}))$

7 Interpretation of χ^2

7 Numerical Optimisation

8 Correcting Data

- Distribution of random variable determined by several factors
 - acceptance: experimental coverage of phase space
 - efficiency: probability of successful measurement
 - resolution: additional random fluctuations caused by measurement
 - background: events not from target sample
- Use control samples or MC for corrections

8 Correction factors

Measurements n_i with background estimate β_i

MC samples before (generator level) and after detector simulation (detector level) give correction factors:

$$C_{_i} = \mu_{_i}^{\rm \ MC} / \ (n_{_i}^{\rm \ MC} - \beta_{_i}^{\rm \ MC}) = \mu_{_i}^{\rm \ MC} / \ n_{_i}^{\rm \ MC, sig}$$

Estimators given by: $\langle \mu_{_i} \rangle$ = (n_{_i} - \beta_{_i}) C_{_i} = $n_{_i}^{\rm \ sig} C_{_i}$

$$\mathbf{E}[\boldsymbol{\mu}_{i}] = (\mathbf{C}_{i} - \boldsymbol{\mu}_{i} / \mathbf{n}_{i}^{\text{sig}}) \mathbf{n}_{i}^{\text{sig}} + \boldsymbol{\mu}_{i}$$

 \Rightarrow results $\langle \mu_i \rangle$ biased if μ_i / n_i^{sig} not well modelled by MC

8 Migration & Response Matrix

39

8 Unfolding

Obtaining f(x) from g(y) is task of unfolding. After discretisation (expected data v, true values μ , background β , observed data n):

 $\mathbf{v} = \mathbf{R} \cdot \mathbf{\mu} + \mathbf{\beta}$ and $\mathbf{\mu} = \mathbf{S} \cdot (\mathbf{v} - \mathbf{\beta})$ with $\mathbf{R}^{-1} \neq \mathbf{S}$

Estimators for μ : $\langle \mu \rangle = R^{-1} \cdot (n - \beta)$ and $\langle \mu \rangle = S \cdot (n - \beta)$

Estimators are LS solution of $\chi^2 = (\mathbf{v} - \mathbf{n})^T \cdot \mathbf{V}^{-1} \cdot (\mathbf{v} - \mathbf{n})$ with V covariance matrix of data $\mathbf{n} \Rightarrow$ no bias, optimal variance

Find R (S) by normalising migration matrix column- (row-) wise Obtaining R^{-1} is an inverse problem \rightarrow regularised unfolding

8 Unfolding Example

Reference sample 10^6 events: Double Gauss $\mu_1 = 0.25$, $\mu_2 = 0.75$, $\sigma = 0.1$ Resolution given by $\sigma_x = 0.075$ Find R and S

Test samples 10³ events:

Generate "smeared" distribution Unfold with R^{-1} or S Compare with reference

8 Unfolding Example

Identical results with R⁻¹ and S in reference

Naive R⁻¹ failes in test → statistical fluctuations of test sample amplified

S gives consistent results

Can avoid regularised unfolding if joint pdf h(x,y) (migration matrix) known

8 Unfolding Example

