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Overview

� Statistics I
� foundations, error calculus

� Statistics II
� Monte Carlo, parameter estimation, unfolding

� OOAD I
� complex systems, object model

� OOAD II
� dependency management, class design
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1 Basics
� Sample space S is a set
� Subset A of S has probability P(A)
� for all A in S: P(A) � 0
� for A, B disjoint: P(A � B)= P(A) + P(B)
� P(S) = 1

� From this
� P(A) = 1 – P(A) with A complement of A
� P(A � B) = P(A) + P(B) – P(A � B)
� P(A|B) = P(A � B) / P(B) 
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1 Bayes Theorem

Consider conditional probabilities P(A|B) and P(B|A)

P(A|B) = P(A � B) / P(B)

P(B|A) = P(B � A) / P(A)

With P(A � B) = P(B � A) one gets:

P(A|B) = P(B|A) � P(A) / P(B) Bayes Theorem

P(A) is called prior probability
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1 Example
Disease carried by P(yes) = 0.001 of population; test for desease
with binary outcomes + and – with P(+|yes) = 0.98, P(+|no) = 0.03

Probability to have desease if tested positive using Bayes theorem:

P(yes|+) = P(+|yes) P(yes) / P(+)

P(+) = P(+|yes) P(yes) + P(+|no) P(no)

P(yes|+) = 0.98�0.001 / ( 0.98�0.001 + 0.03�0.999 ) = 0.032

Why P(yes|+) so small? Prior probability P(yes) is small and thus
contribution from false positives P(+|no) dominates
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1 Frequentist Statistics

� Probability is relative frequency

� P(A) = lim
N��

 n(A) / N with n times result A in 
N tries (experiments)
� P(A|B) = n(A � B) / n(B)

� Corresponds well to quantum processes
� predictions for ensembles, not single events
� limited samples imply statistical uncertainties
� correspondence estimator 	 true value
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1 Bayesian Statistics
� Hypothesis testing
� sample space consists of hypotheses
� P(A) probability that hypothesis A correct

� P(A) = lim
N��

 n(A) / N is also a hypothesis

� Bayes theorem relates hypothesis and data
� P(theory|data) ~ P(data|theory) P(theory)
� prior probability P(theory) subjective
� Desease testing: 

� P(yes) = 0.1 
 P(yes|+) = 0.78
� P(yes) = 0.001 
 P(yes|+) = 0.03
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2 Probability Density Functions
� PDFs are functions of continuous random 

variables:
� P(x�[x', x'+dx]) = f(x')dx

� Normalisation:

� �
S
 f(x) dx = �

-�
� f(x) dx = 1

� Cumulative distribution:

� F(x') = �
-�

x' f(x) dx  = P(x
x')
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2 Mean, Variance, Covariance
Expectation value of random variable x (mean) defined as

E[x] = �
-�
� x f(x) dx = µ

x
 

Variance of x is E[(x - µ
x
)2]:

var(x) = E[(x - µ
x
)2] = �

-�
� (x - µ

x
)2 f(x) dx = E[x2] - µ

x
2 

σ
x
 = �var(x)

Covariance is E[(x - µ
x
)(y - µ

y
)]: 

cov(x,y) = E[(x - E[x])(y - E[y])] = E[xy] - µ
x
µ

y
 

= � xy f(x,y) dxdy - µ
x
µ

y
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2 Statistical Estimators

Estimators of expectation values in finite samples:

Mean: �x� = 1/n �
i=1

n x
i
 E[�x�] = µ

x

Variance: �var(x)� = n/(n-1) (�x2�  - �x�2) E[�var(x)�] = var(x)

Covariance: �cov(x,y)� = n/(n-1) (�xy� - �x��y�) E[�cov(x,y)�] = cov(x,y)

Weak law of large numbers: �x� is consistent estimator of  µ
x
 if

var(x) exists

Correlation coefficient: ρ
xy

 = cov(x,y)/(σ
x
σ

y
) with -1 < ρ

xy
 < 1 



11

3 Multinomial Distribution
In particle physics we “count events”, i.e. measure frequencies
of outcomes and apply frequentist statistics to extract parameters

For N measured values of random variable x normalised histogram
with m bins [x

i
, x

i
+∆x] and n

i
 entries per bin is described by multi-

nomial pdf:

Estimator for p
i
: �p

i
� = n

i 
/N 

Variance of p
i
: �var(p

i
)� = �p

i
� (1 - �p

i
�) / N

Covariance of p
i
: �cov(p

i
, p

j
)� = - �p

i
��p

j
� / N for i�j 

f M ��n , N ;�p��
N !

�i�1

m
�ni !�
�i�1

m
pi

ni
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3 Poisson Distribution
Frequency n of observations
of specific event type given
by Poisson distribution:

f
P
(n; ν) = νn/n! e-ν  

Expectation value:
E[n] = �

n=0
� n νn/n! e-ν = ν  

Variance:
var(n)= �

n=0
� (n-ν)2 νn/n! e-ν 

= ν
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3 Gauss Distribution
Normal or Gaussian distribution with mean µ and variance σ:

f
G
(x; µ, σ) = 1/�(2πσ2) exp( - 0.5 ((x-µ)/σ)2 )  

Central limit theorem: n random variables x
i
 with mean µ

i

and variance σ
i
; X = lim

n��
 �

i=0
n x

i

lim
n��

 f(X) = f
G
(X; �

i=0
n µ

i
, �

i=0
n σ

i
2)   

For x = (x
1
, ..., x

n
) with covariance matrix V = (cov(x

i
, x

j
)) and 

expectation values µ = (µ
1
, ..., µ

n
):

f
G
(x; µ, V) = 1/�((2π)n|V|) exp( - 0.5 (x-µ)T V-1 (x-µ) )  
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3 χ2 Distribution
The χ2 distribution of a continous random variable z:

f
χ
(z; n) = zn/2-1 e-z/2 /( 2n/2 Γ(n/2) )  

Parameter n often called “number of degrees of freedom (d.o.f.)

Mean E[z] = n and Variance var(z) = 2n

Important property:

χ2 = (x-µ)T�V-1�(x-µ) or χ2 = �
i
 ((x

i
-µ

i
)/σ

i
)2 if cov. matrix V diagonal 

follows F
χ
(z; n) � Hypothesis tests and parameter estimation
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4 Error Calculus
Measurement errors of correlated and/or derived quantities

Measurements and errors described by random variables 
x = (x

1
, ..., x

n
) with covariance matrix V = (cov(x

i
, x

j
)) and 

expectation values µ = (µ
1
, ..., µ

n
)

Derived quantities: y = y(x) = (y
1
(x), ..., y

m
(x)); m 
 n

Taylor expansion: y(x) = y(µ) + (d/dx�y(µ)T)T�(x-µ)

Jacobi matrix (d/dx�y(µ)T)T = J describes changes in y due to
deviations of measurements x from expectation values µ. 
Elements of J are J

ij
 = dy

j 
/dx

i
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4 Error Calculus
Covariance matrix W of y given by V and J:

W = E[cov(y)] = E[y�yT] - E[y]�E[y]T   

E[y] = E[y(µ)] + J�E[(x-µ)] = y(µ)

E[y�yT] = E[ (y(µ) + J�(x-µ))�(y(µ) + J�(x-µ))T ] 
= y(µ)�y(µ)T + J�E[(x-µ)�(x-µ)T]�JT 

W = J�V�JT  

W is orthogonal transformation of V given by J        
Errors of y given by diagonal elements of W  
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4 Error calculus examples
Error of product y = x

1
x

2
: 

Error of sum y = a
1
x

1
 + a

2
x

2
:

W�J�V�JT��x2 x1��� �1
2 ��1�2

��1�2 �2
2 ���x2

x1
��x2

2�1
2�x1

2�2
2�2 x1 x2��1�2

�� y

y �
2

���1

x1
�

2

���2

x2
�

2

�
2��1�2

x1 x2

W�J�V�JT��a1 a2��� �1
2 ��1�2

��1�2 �2
2 ���a1

a2
��a1

2�1
2�a2

2�2
2�2 a1 a2��1�2

� y
2��a1�1�

2��a2�2�
2�2 a1 a2��1�2
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4 Error Interpretation
For normal distributed variables x errors σ

x
2 correspond to

variance of Gaussian. By central limit theorem sum of many
errors2 also follows Gaussian. Coverage probability 1 - α given
by f

χ
(χ2, n) with χ2 = δ/σ 

=0.9

1 – f
χ
(χ2, n)
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5 Monte Carlo Methods
Monte Carlo: Simulation of physical processes with probability

density functions (pdf) and random numbers

Example decays:

generate t
i
 such that distribution of t

i
 follows f(t; τ)

Random numbers: n
i+1

 = mod( a n�
i
, m )

a = 40692, m = 2147483399
n

0
 is seed, determines sequence of n

i
  

� pseodo random numbers

f �t ;���
1
�

e
�

t
�
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5 Simulation of pdfs: 
Transformation method

Random variable r � [0,1] uniform, transformed variable x(r) 
distributed according to f(x)

draw r, evaluate F-1(r)

 x distributed as f(x)

Example: exponential distribution

u �r �dr� f �x �r ���dx

����
r

u�r ' �dr '�r����
x �r �

f �x �dx

� x �r ��F�1�r �

f �t ;���
1
�

e
�

t
�� r�F �t ���0

t 1
�

e
�

t '
� dt '�1�e

�
t
�

t��� log�1�r �
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5 Hit-or-miss Method
Problem: f(x) in [x

1
, x

2
], want x distributed as f(x) 

1) Generate r
1
 in [0,1]

x = x
1
 + r(x

2
-x

1
)

2) Generate r
2
 in [0,1]

f
r
 = r

2
f

max
, accept if f

r
 < f(x), 

or go back to 1)

�: universal algorithm
�: inefficient when f

max
    f

min
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5 Physics and Detector 
Simulation

Physics simulation: Generation of 4-vectors, lifetimes
final states etc. following known pdfs
from theory, model or data

Example:event generators PYTHIA and HERWIG
e+e− � (Z/γ)* (γ) � qq(g) 
� parton shower 
� hadron/lepton decays

Detector simulation:
Response of apparatus
to 4-vectors from generator
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5 Parametric Detektor 
Simulation

Measurement uncertainties parametrised
� Simulation via “smearing” of input quantities

Example: simulation of tracking resolution

(OPAL
Jet chamber)

for given p
t
 simulate gaussian distribution:

p
t
' = p

t
 + ∆p

t
 

Use p
t
' in following calculations

� pt

pt

�!0.022��0.0015�pt "GeV #�2

f �$ pt�%e
�

1
2 �$ pt

�Pt
�

2

�$ pt
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5 Detailed Detector Simulation
Detector geometry:
sensitive (active) elements
and passive material

Detectorsimulation in
dataflow of OPAL

[All92]
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5 Example: GOPAL

[All92]
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6 Event Selection: Cuts
Optimisation of t

cut
 by considering

efficiency ε and purity p

Find ε and p from MC simulation of
physics processes und detector response

Pragmatic approach: optimise ε p�

[Cow98]

&��o

tcut

g �t ; H 0�dt

p�
�0

tcut

N 0 g�t ; H 0�dt

�0

tcut

N 0 g �t ; H 0��N 1 g�t ; H1�dt
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6 Likelihood Ratio
Construct test variables x = (x

1
, ... , x

n
) from reconstructed

events (detector level): number of tracks, number of calorimeter
objects, event shapes, total energy, vertices, etc.  

Neyman-Pearson acceptance region optimises p for given ε:

g(x|H
0
) and g(x|H

1
) from MC simulation with events of 

class 1 or 2 as multidimensional histograms � scales like mn 

tL ��x ��
g��x ; H 0�

g��x ; H1�
'c �&�
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6 Fisher Discriminant
Construct test variable t

F
 as linear function of x with expectation 

values E[x] = µ
k
 and covariance matrix V

k
 under hypothesis k

t
F
(x) = a�x with E[t]

k
 = a�µ

k
 and σ

k
2 = aT�V

k
�a 

Maximise separation between two hypothesis 0 and 1:

J(a) = (E[t]
0
 - E[t]

1
)2 / (σ

1
2 + σ

2
2) = (a�(µ

0
 - µ

1
))2 / (aT�(V

0
(V

1
)�a)

dJ/da = 0 
 (µ
0
 – µ

1
) – c(V

0
(V

1
)�a = 0 
 a = 1/c (V

0
(V

1
)-1�(µ

0
 – µ

1
) 

Coefficients a determined from E[x] = µ
k
 and V

k
 in training samples.

x normal under hypotheses 0 and 1 
 t
F
(x) = a�x as good as t

L
(x)
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6 Neural Networks

tSL��x��s �a0��i�1

n
ai xi� tTL ��x��s�a0��i�1

m
ai s�wi0�� j�1

n
wij x j��

Single
Layer
Perceptron

Two Layer
Perceptron

Activation function

Training:find a
i
 und w

ij
 using training samples of class 1 or 2

usually from MC simulation

Linear combination Modeling of non-linear effects via
hidden layer

[Cow98]

s �z��
1

1�e�z

30

7 Parameter Estimation
Adjust theory or model with free parameters to data
by finding optimal values of the parameters

e.g. lifetimes: N measurements t
i
, theory is: 

event shapes: distributions of event shape observables
in e�e− � hadrons
predictions by QCD, free parameter
is strong coupling constant α

S
(M

Z
)

1/σdσ/dy = dA/dy α
S
(M

Z
) + dB/dy α

S
(M

Z
)2  

f � t ;���
1
�

e
�

t
�
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7 Maximum Likelihood

Physical theory or model with pdf f(x, a); x are measurements,
a are free parameters

 

Maximum of L � optimal values for a
[Cow98]

L��i�1

n
f �xi ,�a�dxi

Total probability to obtain measurements
 x

i
 if x distributed according to pdf f(x, a)

d log L ��x ,�a�
d �a

��0��i�1

n d log f �xi ,�a�

d �a

V �a��� )
2 log L ��x ,�a�
)ai)a j

�
�1
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7 ML Example: Lifetime

log L��i�1

n
�log����

t i

�

d log L
d�
�0�����

1
n�i�1

n
t i

d2 log L
d�2 ��i�1

n
�

1
�2�

2 t i

�3 �

*�
n
���2
���

2�
���2

n

Measurements of lifetimes t
i
 distributed like f(t; τ) = 1/τ e-t/τ 
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7 ML with Histogram:
binned ML

Expectation of theory/model 
with pdf f(x, a) for frequency 
in interval [x

i
, x

i
+∆x

i
] (bin i)

Likelihood to observe
histogram with frequen-
cies n

i
 given ν

i
 

Maximum of log L � optimal
parameters a 

+i��a��ntot��xi

xi�$ x
f �x ,�a�dx

L �n1 ,, , nN ;+1,, ,+N ;�a�%�i�1

N �+i��a�

ntot
�

ni

log L��i�1

N
ni log�+i��a��
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7 Least Squares
Consider N random variables y = (y

1
, ..., y

n
)

with normal pdf and theory/model y = λ(a)

χ2 follows χ2-distribution
σ

a
 given by χ2 = χ2

min
 + 1

N normal and correlated variables � N-dimensional Gaussian

[Cow98]

f ��y , �� y ;�a�%�i�1

N
e
�
�yi�-i ��a��

2

2� yi

2

log L ��a���
1
2�i�1

N �yi�-i��a��
2

� yi

2 ��
1
2
.2��a�

V �a��
1
2 � )

2.2 ��a�
)ai)a j

�
�1

.2��a����y��-��a��T�V �y
�1���y��-��a��
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7 Interpretation of χ2

P(χ2) = P(χ2 ≥ χ2
obs

) caused by
statistical fluctuations if
theory/model is correct

P(χ2) small: theory/model?, 
errors?, correlations?

P(χ2)  1: errors?, correlations?*

[Pdg00]
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7 Numerical Optimisation

Newton method:

[Blo98]

Algorithm:

1) Find f, df/dx und H at x
i

2) Find ∆x and thus x
i+1

 
3) Find f, df/dx and H at x

i+1

4) Test convergence

f � �xi�$�x �* f � �xi��
) f � �xi�

)�x
�$�x�

1
2
$�xT�H i�$�x

) f � �xi�$�x �

)�x
*
) f � �xi�

)�x
�H i�$�x��0

$�x��H i
�1�
) f � �xi�

)�x
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8 Correcting Data
� Distribution of random variable 

determined by several factors
� acceptance: experimental coverage of phase 

space
� efficiency: probability of successful 

measurement
� resolution: additional random fluctuations 

caused by measurement
� background: events not from target sample

� Use control samples or MC for corrections
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8 Correction factors
Measurements n

i
 with background estimate β

i
 

MC samples before (generator level) and after detector simulation
(detector level) give correction factors:

C
i
 = µ

i
MC / (n

i
MC – β

i
MC) = µ

i
MC / n

i
MC,sig 

Estimators given by: �µ
i
� = (n

i
 – β

i
) C

i
 = n

i
sig C

i
 

E[µ
i
] = (C

i
 – µ

i 
/n

i
sig) n

i
sig + µ

i
 

 
 results �µ
i
� biased if µ

i 
/n

i
sig not well modelled by MC
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8 Migration & Response Matrix
Migration probabilities:
P(y�[y', y'+dy], x�[x', x'+dx]) = 

h(x', y') dxdy

Response: 
P(y�[y', y'+dy] | x�[x', x'+dx]) = 

h(x', y') dxdy / �h(x', y'')dy''dx =
r(y|x) dy

Reverse response: 
P(x�[x', x'+dx] | y�[y', y'+dy]) = 

h(x', y') dxdy / �h(x'', y')dx''dy = s(x|y) dx

Bayes theorem / unfolding equations:
g(y) = �h(x, y)dx = �r(x|y)f(x)dx = r(y|x)0f(x) 
f(x) = �h(x, y)dy = �s(y|x)g(y)dy = s(x|y)0g(y)
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8 Unfolding
Obtaining f(x) from g(y) is task of unfolding.  After discretisation
(expected data ν, true values µ, background β, observed data n):

ν = R�µ + β and µ = S�(ν – β) with R-1 � S 

Estimators for µ: �µ� = R-1�(n - β) and �µ� = S�(n - β) 

Estimators are LS solution of χ2 = (ν - n)T�V-1�(ν - n) 
with V covariance matrix of data n 
 no bias, optimal variance

Find R (S) by normalising migration matrix column- (row-) wise
Obtaining R-1 is an inverse problem � regularised unfolding
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8 Unfolding Example
Reference sample 106 events:

Double Gauss µ
1
 = 0.25, µ

2
 = 0.75,

σ = 0.1
Resolution given by σ

x
 = 0.075

Find R and S

Test samples 103 events:

Generate “smeared” distribution
Unfold with R-1 or S
Compare with reference
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8 Unfolding Example
R-1 S

Refe-
rence

Test

Identical results with R-1

and S in reference

Naive R-1 failes in test � 
statistical fluctuations of 
test sample amplified

S gives consistent results

Can avoid regularised un-
folding if joint pdf h(x,y)
(migration matrix) known
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8 Unfolding Example
Upper row:

χ2 = (µ - �µ�)T�W-1�(µ - �µ�)
W = S�V�ST 

W often singular � χ2 and
P(χ2) unreliable

Lower row:

χ2 = (ν - n)T�V-1�(ν - n)

V diagonal � χ2 stable


