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Introduction

ATHENA reconstruction tools for different objects: !

@ muons (MUONBOY/STACO .vS. MOORE/MUID)
@ electrons, photons (EGAMMA)

e jets, b-jets, 7-jets __ (JETREC, BTAG, TAUREC/TAU1P3P)
@ missing energy (M1ssINGET)

Validation issues:

@ reconstruction efficiency % and purity ,'\\,'#
truth truth
@ energy loss, energy calibration (using MC_truth and data)

@ resolution (energy and direction)
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Initial Detector Layout
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Muons

Standard algorithm: Muon Spectrometer — Inner Detector J

o fit through the track segments in the muon spectrometer
@ energy loss corections in the calorimeter
(parametrized or directly measured)
@ combining with inner detector track for optimum performance

— Achieved pr-resolution: 2-10% for 4 < pt < 1000 GeV.

Low-p7 muons (MUIDLOWPT): Inner Detector — Muon Spectrometer J

@ Standard reconstruction is inefficient for muons with pt <5 GeV/c.
@ start with the inner detector track
@ extrapolate to muon spectrometer and match muon digits
(no track fit performed in the spectrometer)
@ at least one muon with sufficient momentum needed for triggering

= p7-resolution under study
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Muon Reconstruction Efficien

@ improved pattern recognition to handle the initial layout

@ Similar performance of both reconstruction packages:
e(Inl < 2) = 94%; (2 < |n| <2.7) ~85%
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Min.Bias and Cavern Background (M

e Luminosity values: (1, 2, 5) x 103 cm—2s71

@ Safety factors on cavern background: sfO1, sf02, sfO5
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MUONBOY efficiency and resolution unaffected, MOORE not tested.




Muon Energy Loss Corrections

measured - true

— parametrized - true
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@ Parametrization related to the map of the detector material:
fails at large energy losses.

@ Measured energy loss:
measuremed energy loss in the calorimeter cells
_|_
parametrization for the dead material,
~30% resolution improvement.
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Electrons

High-pt electrons, (EGAMMA):

@ candidate selected from the shower properties
(leakage in hadron cal., shower shape from energy fractions)
and track match with inner detector (E/p, |An|, |A¢|)

— e/jet-separation:
cut-based separation, rejection of ~10° for ¢ ~ 75 — 80%
new multivariate techniques, slightly higher rejection (preliminary)

Low-pt electrons: (SOFTE, new)

e start from inner detector tracks, apply quality cuts
@ extrapolate to sampling of EM Calorimeter
@ create cluster around the cell

— e/m-separation using 8 discriminating variables
likelihood and neural network techniques on J/V, WH, ttH
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low-pT electrons (SOFTE)
high-prt electrons (EGAMMA)
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o EGAMMA and SOFTE run separately

@ AOD: if the same track is found by both - only EGAMMA stored




Electron Energy Calibration

Each calibration stage gathers additional knowledge and refinements:
@ LVL1, ROD, LVL2, offline cell reconstruction,
clusters, combined reconstruction, identified particles

Corrections (energy and/or 1 dependent)
performed on single electron samples, using MC-truth and Z — ee:

@ shower shape in 1, ¢-offset, energy.vs.(¢, n), gap correction;
longitudinal weights Erec = A (b+ WoEpres + E1 + E2 + W3E3)

@ CALOCLUSTERS:
- linear energy measurement (0.1%) over a wide energy range
- worse resolution (11-16%) compared to TDR (9-13%)
(more material in front of EM)

@ preliminary studies using TOPOLOGICAL CLUSTERS
slightly better resolution, non-linearities still to be understood
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Jet Algorithms:

o

@ Cone: simple and fast, easier to calibrate
@ K7: more accurate, harder to calibrate
— performance in different physics
analyses to be studied
(using different noise treatments) KT-JET CONE-JET

Jet Calibration Strategies (di-jet calibration samples):

F=5 [(ETRUE — Egeco)® + M (ETruE — ERECO)} . Ereco = Y_; wiE;
E; (w;) energy (weight) in different calorimeter region

H1-style (default): CellWeight = f(CellEnergyDensity)
PISA-STYLE: CellWeight = f(CellEnergy, JetEnergy)
Sampling Calibration: SamplingLayerWeight = f(JetEnergy)

local hadron calibration:
based on localized energy deposits in calorimeters




Global Jet Calibration

Global = use full detector to correct analysis dependent effects. J
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Local Hadron Calibration

Local = use local energy depositions to derive weights.
— no dependence on the physics process J

@ separate EM and HAD deposits:
best modelling of shower processes, best detector description

Calibration based on single pions from MC and testbeam.
(translation for hadrons to be discussed)
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b-Tagging

b-taggers (developement mostly done on AOD): J

Soft Lepton e IP2D (IP3D), Lifetime2D:
4 transverse (+4longitudinal)
impact parameter

@ SV1, SV2: Secondary vertex

(select all tracks with big IP inside jet,
try to reconstruct 1 common vertex,
" accept new vertex if far from primary)

o' 1P2D Jet Weight 'L SVIHIP3D Jet Weight
b-jets

u-jets -




b-Tagging Performance
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Many studies still going on:
@ tracking algorithms (iPatrRec .vs. xKalman), jet algs.
@ displaced primary vertex - no effect on b-tagging (preliminary)

@ influence of commissioning misalignment (estimated from DO)
10% loss in b-tagging performance = 10 um alignment needed.
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Soft Lepton b-Tagging
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@ identification of low-pr leptons from semileptonic b-decays:
looking for jets with at least 1 electron with pr >2 GeV,
discriminating between jet flavors using likelihood, neural network

@ complementary to vertex tagging

@ studies with pile-up, neural network to improve soft e-id




TAUREC '

@ select candidates from different objects:

CaloClusters(default), TopoClusters, Jets, Isolated Tracks
@ associate tracks to candidate

@ build the set of variables for T-identification, calculate likelihood
@ calibrate the candidate (H1-style), aply selection cuts

Track based approach, TAUIP3P (to be imorted into ATHENA) J

@ dedicated to searches for light Higgs or soft SUSY
e hadronic 7 = (1 track + Y_7%) or (3 tracks + >_7°)
@ decay products well collimated in space,

track provides an estimate of direction




7-Reconstruction Performance

RESOLUTION .vs. E_T

-
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@ energy resolution similar for both packages

@ directional resolution better for 71P3P

(T reconstructed at vertex,
while tauRec reconstructs 7 in the calorimeter)

@ 71P3P (red) has higher efficiency at low energies

@ lower mistagging rate for 71P3P
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Missing Energy

MissINGET package |

e MET_Final = MET_Calib(Topo) + MET_Muon + MET _Cryo

e MET _Calib:
from all Calo Cells, H1-style calibration, 20-noise threshold
e MET_Topo:
from all TopoCluster Cells, H1-style calibration, noise threshold
4/2/0
e MET_Myon:
muon contribution from Muon Spectrometer only (MOORE)
@ MET _Cryo:
estimated energy loss in the cryostat between LAr and Tile
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Missing Energy Resolution

EtMiss Performance in 10.0.1: Z° — =t DS 4807 Rome Prod
= MET_Final from All Calo Cells with |E_;, | > 2o ( noise )

SumET - Rec = =| Final EtMiss me l:;"é
el 111 - Truth nawton  © Resol
b 3 < =200.8
3 <>=2263
i 3 F_SET iee
aaof- CoE—
200f- -
nawton 1
T R T T T

= MET_Final from Calo Cells in TopoClusters (4/2/0)

SumET - Rec [ = Final EtMiss E,_ -'3;3,';'
St ;HM ll —Truth e Resol T mem
o 3 | comure wie 0
<> =207 = Som  Timsiem
8 <> ~-1.62

o~786

@ resolution slightly improves with TopoClusters

@ energy shift to higer values at low energies

@ tunning of thresholds, refined calibration for lower energies




@ default reconstruction tools for physics analyses are available

@ busy development time,
- efficiency improvements (in low-p7 region), noise suppression
- ongoing calibration studies, mostly with MC
(common strategy to be discussed)
- first studies of pile-up effects
often outside the official release, or even outside ATHENA

@ all performances close to the desired ones

Disclaimer: y

not everything shown here has been available
for the official Rome data production (sim+digi 9.0.4, reco 10.0.1)
— differences between samples produced at different production sites

Rome post mortem by the Higgs Working Group (29.06.2005.):
"We need a stable, bugfree software release to continue.”
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