Particle Detectors II

Physics Cases and Detector Challenges

- Particle Interactions
- Tracking Detectors
- Calorimeters

Day 1

Reconstruction and Detector Concepts

can only give an incomplete overview of existing detectors and detector technology with slight focus on LHC detectors

Physics at Hadron Colliders – Particle Detectors

Tracking Detectors

- Momentum Measurement
- "Classic" Detectors (historical touch...)
- Wire Chambers
- Silicon Detectors

Physics at Hadron Colliders – Particle Detectors

Momentum Measurement

Charged particles are deflected by magnetic fields

- homogeneous B-field \rightarrow particle follows a circle with radius r

 $p_t [\text{GeV/c}] = 0.3 \cdot B [\text{T}] \cdot r [\text{m}]$

measuement of *p_t* via measuring the radius

this is just the momentum component ⊥ to the B-field transverse momentum p_t

- no particle deflection parallel to magnetic field

→ if particle has longitudinal momentum component
 → particle follows a helix

Physics at Hadron Colliders – Particle Detectors

total momentum p to be measured via dip angle λ

$$p = \frac{p_t}{\sin \lambda}$$

Sagitta Error (the Gluckstern formula)

How to measure the radius?

 tracking detectors measure the position of the track on various points along the circle

Physics at Hadron Colliders – Particle Detectors

Momentum Resolution

The (transverse) momentum resolution is dominated by two components

- contribution from measurement error $\frac{\sigma_{p_t}}{p} \propto p_t$

- contribution from multiple scattering (remember $\Theta_0 \propto \frac{1}{p_t} \sqrt{\frac{L}{X_0}}$)
 - what is the consequence to the relative momentum error? we know that

$$\frac{\sigma_{p_t}}{p} \propto p_t \cdot \sigma_{r\phi}$$

replacing point measurement error with multiple scattering error

 $\frac{\sigma_{p_t}}{p} \bigg|^{\text{m.s.}} \propto p_t \cdot \Theta_0 = \text{const}(!)$

the multiple scattering contribution to the transverse momentum error is constant

typical size of multiple scattering contribution ~0.5%

tracking detector filled with 1 bar Argon, 1 m track length

Physics at Hadron Colliders – Particle Detectors

• Cloud chamber (1911 by Charles T. R. Wilson, Noble Prize 1927)

- chamber with saturated water vapour
 - originally developed to study formation of rain clouds
- charged particles leave trails of ions
 - water is condensing aound ions
- visible track as line of small water dropletts

Condensation droplets

positron is loosing energy in lead: narrower curvature, this defines the track direction!

was used at discove (1932 by Carl Anderson

Charged particle

lead plate

Free ions

upward going positron

Physics at Hadron Colliders – Particle Detectors

was used at discovery of the positron (1932 by Carl Anderson, Noble Prize 1936)

- Similar principle than cloud chamber:
- Bubble chamber (1952 by Donald Glaser, Noble Prize 1960)
 - --- chamber with liquid (e.g. H₂) at boiling point ("superheated")
 - charged particles leave trails of ions
 - formation of small gas bubbles around ions

was used at discovery of the "neutral current" (1973 by Gargamelle Collaboration, no Noble Prize yet)

Physics at Hadron Colliders – Particle Detectors

400 MeV electron

Advantages of bubble chambers

- liquid is BOTH detector medium AND target
- high precision
- Disadvantages
 - --- SLOW!!!
 - event pictures taken with cameras on film
 - film needs to be developed, shipped to institutes
 - and optically scanned for interesting events
 - Need FASTER detectors (electronic!)

However: Some important social side effects of bubble chamber era...

- scanning often done by young "scanning girls" (students)...
- ... who later got married with the physicists...

Physics at Hadron Colliders – Particle Detectors

The Geiger-Müller tube (1928 by Hans Geiger and Walther Müller)

- Tube filled with inert gas (He, Ne, Ar) + organic vapour
- Central thin wire (20 50 μm Ø) , high voltage (several 100 Volts) between wire and tube

- Strong increase of E-field close to the wire
 - electron gains more and more energy
- above some threshold (>10 kV/cm)
 - electron energy high enough to ionize other gas molecules
 - newly created electrons also start ionizing
- avalance effect: exponential increase of electrons (and ions)
- measurable signal on wire
 - organic substances responsible for "quenching" (stopping) the discharge

Michael Hauschild - CERN, 15/16-Feb-2006, page 9

Physics at Hadron Colliders – Particle Detectors

- Geiger-Müller tube just good for single tracks with limited precision (no position information)
 - in case of more tracks more tubes are needed or...
- Multi Wire Proportional Chamber (MWPC) (1968 by Georges Charpak, Nobel Prize 1992)
 - put many wires with short distance between two parallel plates

charged particle

Physics at Hadron Colliders – Particle Detectors

Georges Charpak, Fabio Sauli and Jean-Claude Santiard

Wire Chambers - MWPC

Multi Wire Proportional Chamber (MWPC)

- was first electronic device allowing high statistics experiments
- and with resonable resolution
- Typically several 100 1000 wires, ~ 1 mm spacing
 - \rightarrow if charged particle is passing the MWPC \rightarrow one wire gives signal
 - → resolution: $\sigma_x \approx \frac{\alpha}{\sqrt{12}}$ e.g. for d = 1 mm → ~300 µm

we don't know where the particle went through within the 1 mm spacing = "flat" probability distribution, this is the width of an equivalent Gaussian distribution

Probability

Michael Hauschild - CERN, 15/16-Feb-2006, page 11

 σ_x

d/2

If many MPWCs are put one after each other

- each particle creates one point per MWPC (~300 µm resolution per point)

Physics at Hadron Colliders – Particle Detectors

Wire Chambers – Operation Modes

No collection (I)

ions recombine before collected

Ionization Mode (II)

- ionization charge is fully collected, no charge multiplication yet
- gain ~ 1

Proportional Mode (IIIa)

- gas multiplication, signal on wire proportional to original ionization
- gain $\sim 10^4$

Limited Proportional Mode (IIIb)

- secondary avalances created by photoemission from primary avalances, signal no longer proportional to ionization
 - gain $\sim 10^{10}$

Geiger Mode (IV)

massive photoemission + discharge, stopped by HV breakdown

Physics at Hadron Colliders – Particle Detectors

Wire Chambers – Signal Formation

Signal formation is DIFFERENT to what you may think of

- Electrons from avalance are collected within a very short time (few ns)
- Contribution of electrons to wire signal is rather small (few % only)

Main part of the signal comes from the IONS

- Ions drift back to cathode over long distance (several mm or cm) and time (many µs or even ms)
- Moving ion charge creates signal via influence (mirror charge in conductor)

pure signal (no electronics shaping) from ions drifting away from anode wire

Physics at Hadron Colliders – Particle Detectors

Wire Chambers - Quenching

Slight problem in gas avalance

- Argon atoms can be ionized but also can be brought into excited states
- Exited Argon atoms can only de-exite by emission of high-UV photons

Physics at Hadron Colliders – Particle Detectors

Wire Chambers – Drift Chambers

Resolution of MWPCs limited by wire spacing

- better resolution \rightarrow shorter wire spacing \rightarrow more (and more) wires...
 - larger wire forces (heavy mechanical structures needed)
 - (too) strong electrostatic forces when wires too close to each other

Solution

- obtain position information from drift time of electrons
 - drift time = time between primary ionization and arrival on wire (signal formation)

start signal (track is passing drift volume) has to come from external source: scintillator or beam crossing signal

 Need to know drift velocity v_D to calculate distance s to wire (= track position within the detector)

$$s = \int_{t_{start}}^{t_{stop}} v_D dt$$

Michael Hauschild - CERN, 15/16-Feb-2006, page 15

Physics at Hadron Colliders – Particle Detectors

Wire Chambers – Drift Velocity

Large range of drift velocities in gases: 1 10 cm/µs

- for a certain mixture

depends on electrical field and gas density (pressure)

Typical categories

- -- "slow" gases, e.g. CO₂ mixtures
 - 1-2 cm/µs, almost linear dependence on E-field
- -- "fast" gases, e.g. CF₄ mixtures
 - ~10 cm/µs or more

LHC detectors need fast gases = short drift time to collect all electrons until next bunch crossing (25 ns) or at least within a few bunch crossings only

- --- "saturated" gases, e.g. CH₄ mixtures
 - have maximum of drift velocity at certain E-field
 - widely used: Ar/CH₄ (90/10)

gases with drift velocity maximum are rather convienient: drift velocity less sensitive to E-field variations and almost constant

Physics at Hadron Colliders – Particle Detectors

multiple combinations:

lots of black magic!

Wire Chambers - Diffusion

Electrons scatter with the gas molecules on their way to the wire (diffusion)

Measured drift time is arrival time of "first" electron $n_{el} = 100$ (above detection threshold) $\sigma_{\text{first}} = \frac{\pi}{\sqrt{12 \ln(n_{\text{ol}})}} \sigma_{\text{x}} \approx 0.4 \cdot \sigma_{\text{x}}$

if "no" threshold (unlimited sensitivity)

Physics at Hadron Colliders – Particle Detectors

Wire Chambers - Resolutions

- Typical resolutions of drift chambers: 50...150 µm depends on the length of the drift path
 - primary ionization statistics: how many ion pairs, ionization flutuations
 - dominates close to the wire
 - diffusion: diffusion constant, drift length
 - dominates for large drift length
 - electronics: noise, shaping characteristics
 - constant contribution, independent on drift length

Physics at Hadron Colliders – Particle Detectors

very different drift lengths of electrons for tracks close to the wire, position of fastest electron very much dependent on ionization fluctuations

anode wire

more black magic.... Wire Chambers – Ageing

Wire Chambers don't work/live forever

- gas avalance region close to wire is region of plasma formation
 - ...and plasma chemistry not well understood in general

Avalance region

- dissociation of detector gas and pullutants
- formation of highly active radicals
- polymerization of organic quenchers
- insulating deposits on anodes and cathodes

Anode: increase of wire diameter reduced and variable E-field variable gain and energy resolution

Cathode: ions on top of insulating layer cannot recombine built-up of strong E-field across insulating layer electron field emission and microdischarges

"Malter effect", first seen by L. Malter in 1936: L. Malter; Phys. Rev. 50 (1936), 48

Conclusions of an ageing workshop many years ago: CO₂ helps with water, and alcohol admixtures...

Physics at Hadron Colliders – Particle Detectors

hard deposits. typically SiO₂ (quartz)

Resistive Plate Chambers (RPC)

There are also gaseous detectors without wires

- two resistive plates (~10⁹ Ω cm) with a small gas gap (2 mm) and large high voltage (12 kV) on outside electrodes
- strong E-field: operation in "streamer mode"
 - gas avalance already starting in gas gap (no wires involved)
 - developing of "streamers" (blob with lots of charge, almost like a spark)
 - signal on external read-out strips via influence (segmented for position resolution)
 - streamer/discharge is "self-quenching": stops when near-by resistive electrodes are locally discharged (E-field breaks down)

Gas Detectors in LHC Experiments

- Mainly used in Muon Systems (ALICE, ATLAS, CMS, LHCb)
 - precise muon tracking (drift tubes) and triggering (RPC)
- Also in Inner Tracking system (ALICE, ATLAS, LHCb, TOTEM)
 - mainly straw tubes = small, light weighted tubes
 - but not the innermost detector layer
 - domain of semi conductor (silicon) detectors

Specific LHC challenges (for gas detector systems)

- high track rate (25 ns) and density (~1000 tracks per bunch crossing)
 - need short drift times (avoid integrating over too many bunch crossings) + high granularity = fast gases, small sized detectors
 - need "ageing-free" gases/detectors
 - lots of effort spent over years in this field
 - extensive irradiations with Gamma irradiation source, lab studies with X-ray sources etc.

Detector History

Cloud Chambers dominating until the 1950s

- now very popular in public exhibitions related to particle physics

Bubble Chambers had their peak time between 1960 and 1985

- last big bubble chamber was BEBC at CERN (Big European Bubble Chamber), now in front on the CERN Microcosm exhibition
- Wire Chambers (MWPCs and drift chambers) started to dominate since 1980s
- Since early 1990s solid state detectors are in use
 - started as small sized vertex detectors
 - now ~200 m² silicon surface in CMS tracker

Physics at Hadron Colliders – Particle Detectors

Solid State Tracking Detectors

Basic element of a solid state (silicon) detector is... a diode

٢

0

- p-type and n-type doped silicon material is put together

charged particle can create new electron/hole pairs in depletion area sufficient to create a signal

Physics at Hadron Colliders – Particle Detectors

around junction of p- and n-type material depletion region is created

- zone free of charge carriers
 - no holes, no electrons
 - thickness of depletion region depends on voltage, doping concentration

typically 20'000 - 30'000 electron/hole pairs in 300 μm thick material

Silicon Tracking Detectors

Now take a large Si crystal, e.g. 10 x 10 cm², 300 µm thick

make bottom layer p-type

and subdivide the top n-type layer into many strips with small spacing

many diodes next to each other (like MWPC at wire chambers) with position information

Advantage compared to wire/gas detectors

- strip density (pitch) can be rather high (e.g. ~20 μm)
 - high position accuracy
 - but also many electronics channels needed

Michael Hauschild - CERN, 15/16-Feb-2006, page 24

Physics at Hadron Colliders – Particle Detectors

Si-Detector Electronics and Si-Pixels

- Silicon detectors have a laaaarge number of electronics channels, ~10⁷ each for ATLAS and CMS Si trackers
 - requires highly integrated chips for amplification, shaping, zero suppression (only information of strips with signals is read-out) and multiplexing (put all strip signals on a few cables only)
 - electronics is directly connected to the sensor (the "multi-diode") via wire bonds

Physics at Hadron Colliders – Particle Detectors

Radiation Damage

Solid state detectors suffer from radiation damage

 Iots of R&D effort was spent over the past years to understand and to develop radiation-hard Si-detectors that can survive 10 LHC years

Two general types of radiation damage

- bulk (crystal) damage (mainly by nuclear interactions of protons/neutrons
 - change of depletion voltage
 - up to "type inversion" n-type material becomes p-type material
 - increase of leakage current
 - higher noise, more cooling needed
 - decrease of charge collection efficiency
 - less signal
- surface damage

 \odot

0

- accumulation of positive ions on surface insulating structures (oxides)
 - higher noise, breakdown

"Type inversion": n-type material changes to p-type material after a certain accumulated radiation dose

Michael Hauschild - CERN, 15/16-Feb-2006, page 26

Physics at Hadron Colliders – Particle Detectors

Calorimeters

- Homogeneous and Sampling Calorimeters
- Electromagnetic and Hadronic Calorimeters
- Photon Detectors

Physics at Hadron Colliders – Particle Detectors

Calorimeter Concepts

Homogeneous calorimeters

- absorber material (generation of the shower) = detector material

typically an electromagnetic shower is created in an optical transparent absorber, photons created in the shower are collected and detected with some photo detector

Sampling calorimeters

 passive (heavy) absorber material (iron, copper, lead, tungsten, uranium) interleaved with active detector material

absorber

detector

Physics at Hadron Colliders – Particle Detectors

Homogeneous Calorimeters

Clear advantage: good energy resolution

- the entire shower is kept in active detector material
 - no shower particle is lost in passive absorber

Disadvantages

- Iimited granularity, no information on shower shape in longitudinal direction (along particle flight direction)
 - position information is useful to resolve near-by energy clusters, e.g. single photons versus two photons from π^0 decay

dense, transparent materials needed with short radiation length and high light yield

Physics at Hadron Colliders – Particle Detectors

Photon Detectors

We need to convert photons into an electronic signal
 use photo effect

Requirements

- sometimes only a few photons available (Čerenkov radiation)
 - need high quantum efficiency (high efficiency to convert $1 \gamma \rightarrow 1 e$ -)
- even with high(est) photon conversion efficiency
 - signal from a single electron after conversion is not sufficient
 - need multiplication mechanism to get signal well above noise level of electronics
 - typical noise level: O(100) electrons

Main types

- vaccum-based (classical Photo Multiplier Tube PMT)
- gas-based
- solid-state (solid state photo diodes)
- hybrid (mixture of above types)

Physics at Hadron Colliders – Particle Detectors

Photo Cathodes

optical

window

3-step process of photon to electron conversion

- photon absorption

photon is absorbed in photo cathode + creates electron with some energy by photo effect

electron diffusion

electron moves through photo cathode material, affected by multiple scattering with some energy loss

electron emission

electron reaches surface with sufficient energy (work function) to escape into vacuum

Typical losses

 \odot

۵.

- photon already reflected/absorbed at/in optical window
- photon passes through photo cathode layer without creating an electron
 - photo cathode layer too thin
- electron is loosing too much energy before reaching surface
 - photo cathode layer too thick or work function too high

photo

cathode

e

Quantum Efficiencies

Typical photo cathode materials

- alkali metals (have low work function)

Physics at Hadron Colliders – Particle Detectors

Energy Resolution

- Number of particles in shower should be proportional to energy of initial particle $N_{\text{track}} = \frac{E}{E}$
 - error of energy measurement mainly determined by fluctuations in the number of tracks $\sigma(N_{\text{track}}) = \sqrt{N_{\text{track}}}$
 - so the relative energy measurement error is

- more contributions come from detector inhomogenities and noise

Physics at Hadron Colliders – Particle Detectors

Michael Hauschild - CERN, 15/16-Feb-2006, page 33

 $\frac{\sigma(E)}{E} \propto \frac{1}{E}$

Sampling Calorimeters

- Typical sampling calorimeters use iron or lead absorber material, variety of detectors in between possible
 - gas detectors (MWPCs), plastic scintillators, liquid noble gases (LAr, LKr)
- ATLAS is using LAr with "acordeon" shaped steel absorbers
 - LAr is ionized by charged shower particles
 - Charge collected on pads
 - ionization chamber, no "gas" amplification
 - pads can be formed as needed \rightarrow high granularity
 - Energy resolution (test beam)

$$\frac{\sigma(E)}{E} = \frac{9.24\%}{\sqrt{E}} \oplus \frac{0.23\%}{E}$$

 acordeon structure helps to avoid dead zones (cables etc.)

simulated shower

<image>

Physics at Hadron Colliders – Particle Detectors

Hadron Calorimeters

Energy resolution much worse than for electromagnetic calorimeters $\underline{\text{CMS}} \quad \frac{\sigma(E)}{E} = \frac{65\%}{\sqrt{E}} \oplus \frac{5\%}{E}$

larger fluctuations in hadronic shower

usually only a few nuclear interactions length deep (5 – 6 λ_{I})

Both ATLAS and CMS use scintillators as detector material

- need many optical fibers to transport light from scintillators to photo detectors

Michael Hauschild - CERN, 15/16-Feb-2006, page 35

Physics at Hadron Colliders – Particle Detectors

Muon Detectors

Muon detectors are tracking detectors (wire chambers)

- they form the outer shell of the (LHC) detectors
- they are not only sensitive to muons (but to all charged particles)!
- just by "definition": if a particle has reached the muon detector it's considered to be a muon
 - all other particles should have been absorbed in the calorimeters

Challenge for muon detectors

- large surface to cover (outer shell)
- keep mechanical positioning stable over time

ATLAS

Aluminum tubes with central wire filled with 3 bar gas

- 1200 chambers with 5500 m²
- also good knowledge of (inhomogeneous) magnetic field needed

Physics at Hadron Colliders – Particle Detectors

ATLAS Muon Detector Elements

Reconstruction and Detector Concepts

- From Physics to Raw Data and back
- Calibration, Alignment, Simulation
- ATLAS + CMS Detector Concepts
- Summary

Physics at Hadron Colliders – Particle Detectors

From Physics to Raw Data

Actually recorded are raw data with ~400 MB/s for ATLAS/CMS

- mainly electronics numbers

e.g. number of a detector element where the ADC (Analog-to-Digital converter) saw a signal with x counts...

Physics at Hadron Colliders – Particle Detectors

۵

From Raw Data To Physics

- reconstruction + analysis of the event(s)

Physics at Hadron Colliders – Particle Detectors

Calibration

E.g. need to know

- -- how many ADC counts in a certain region of the calorimeter are equivalent to a 100 GeV electron (scaling factor)?
- how linear is the calorimeter over the full energy range? scaling factor constant?
- how different are the scaling factors in the various calorimeter regions?

Possible ways to get this information (calibration data)

- test beam: put detector in electron beam with know energy and check all regions before installing
 - not possible for all detector elements, time constraints, availability
- use (known) electronic test pulses, light sources etc.
- \twoheadrightarrow calibrate with LHC data, e.g. use $Z^0 \to e^+e^-$ decays
 - try to identify electrons, measure electron energies, reconstruct invariant mass
 - if reconstructed mass $\neq Z^0$ mass \rightarrow correct scaling factors
 - requires lots of statistics (can take ~year(s?) to collect sufficient calibration data)

Physics at Hadron Colliders – Particle Detectors

 \bigcirc

۵

Silicon detectors have a very good point resolution, ~10 µm

- but where is this point exactly in space, w.r.t. the global detector coordinate system?
- resolution ≠ absolute accuracy
- Point is usually defined by strip number or pixel number
 - = within the local Si detector frame (10 x 10 cm² scale)
 - limited mechanical positioning of one Si detector element to each other
 - shifts and rotation of the elements, bowing (non flatness) etc.
 - need to know all positions of the detector elements
 - Possible alignment strategies
 - can measure positions in the lab before installation (survey)
 - stability after installation?
 - use alignment system (e.g. laser tracks, piezo) to measure positions
 - align with LHC tracks, e.g. minimize deviations from track in χ^2 fit

Physics at Hadron Colliders – Particle Detectors

Simulation (Monte Carlo)

Even with best calibration + alignment

- some detector influence, e.g. efficiency for track reconstruction etc. will not be known well enough from data
- Use detector simulation (Monte Carlo) to "unfold" detector influence

Simulation contains full detector description

- geometry, detector volumes, detector response (noise etc.)
- physics interactions with matter and tracking particles through detector volumes (GEANT3/GEANT4 package)
- also needed for detector design studies before detector actually built

Physics at Hadron Colliders – Particle Detectors

ATLAS (A Toroidal LHC ApparatuS)

~7'000 t Muon Detectors **Electromagnetic Calorimeters** main assembly in cavern Forward Calorimeters Solenoid End Cap Toroid \rightarrow 22 m Inner Detector **Barrel** Toroid Shielding Hadronic Calorimeters 44 m

Physics at Hadron Colliders – Particle Detectors

CMS (Compact Muon Spectrometer)

Physics at Hadron Colliders – Particle Detectors

ATLAS/CMS

- The two large LHC detectors have somewhat different concepts
 - ATLAS
 - small inner tracker with moderate field (small 2 T solenoid)
 - sampling calorimeter with high granularity
 - air-core toroid system for good muon momentum measurement

emphasis on granular calorimeter and good muon measurement

- CMS

0

- large inner tracker with high B-field (large 4 T solenoid)
- homogeneous crystal calorimeter with good energy resolution
 - emphasis on good general tracking and good energy resolution

Physics and operational experience has to tell what might be the better concept for certain physics channels...

Physics at Hadron Colliders – Particle Detectors

ATLAS/CMS in detail

	ATLAS	CMS
Tracker or Inner Detector	Silicon pixels, Silicon strips, Transition Radiation Tracker, 2 T magnetic field (small solenoid)	Silicon pixels, Silicon strips, 4 T magnetic field (large solenoid)
Electromagnetic calorimeter	Lead plates as absorbers with liquid argon as the active medium	Lead tungstate (PbWO ₄) crystals both absorb and respond by scintillation
Hadronic calorimeter	Iron absorber with plastic scintillating tiles as detectors in central region, copper and tungsten absorber with liquid argon in forward regions.	Stainless steel and copper absorber with plastic scintillating tiles as detectors
Muon detector	Large air-core toroid magnets with muon chamber form outer shell of the whole ATLAS	Muons measured already in the central field, further muon chambers inserted in the magnet return yoke

Detector Challenge (following the physics case)

- the LHC puts new demands on detector technology

- good momentum resolution up to TeV scale
- high rate capabilities, fast, high granularity, radiation-hardness
- -> different magnet concepts at LHC experiments
 - ATLAS: toroid system, CMS: "classical"solenoid

Tracking Detectors

- momentum resolution has two main contributions
 - error from multiple scattering, dominates at low momenta
 - requires thin detectors
 - error from point measurements, dominates at high momenta
 - good point resolution, large B-field and large track length helps (L²)
- mainly two types of track detectors
 - wire detectors (gas) since 1968s
 - point resolution limited by diffusion to ~50-150 μm
 - silicon detectors since early 1990s
 - very good point resolution, many electronics channels, "thick" compared to wire chambers

Physics at Hadron Colliders – Particle Detectors

۵

 \bigcirc

Calorimeters

- two types of calorimeters

- electro-magnetic (electrons and photons) and hadronic (hadrons)
- dimension of calorimeters determined by radiation length (20-25 X_0) and nuclear interaction length (hadronic)
- two basic concepts
 - homogeneous calorimeter, one type of material for both shower generation (absorption) and detection
 - sampling calorimeter, passive material for shower generation, active material for detection, less energy resolution but better granularity possible

Reconstruction and Detector Concepts

- recorded detector output is mainly electronics information
 - need detector calibration and alignment to reconstruct physics quantities
 detector simulation (Monte Carlo) needed to unfold overall detector influence
- ATLAS and CMS detector concepts have different focus
 - physics has to decide on the better concept

Physics at Hadron Colliders – Particle Detectors

Acknowledgements

Many Thanks to

- Carmelo D'Ambrosio (CERN)
- Klaus Desch (Freiburg)
- Thierry Gys (CERN)
- Christian Joram (CERN)
- Michael Moll (CERN)
- Christoph Rembser (CERN)
- Gigi Rolandi (CERN)
- Leszek Ropelewski (CERN)
- Olav Ullaland (CERN)
- for their help and material