Standard Model

Eckhard von Törne Universität Bonn, Kansas State University

<u>14.</u>/15. Februar 2006

München Feb. 2006

Overview

- 1. Theory Overview
- 2. Experimental Verification of QCD
- 3. Experimental Verification of Electroweak Sector
- 4. Higgs Search Strategies at the LHC
- 5. Experimental Evidence for Physics beyond the **Standard Model** ш
- 6. "Exam"

Section 1

- **Theory Overview**
- □1.1 Introduction □1.2 Lagrange Density of the SM □1.3 Symmetry Breaking □1.4 Couplings + Weinberg Angle **1.5 QCD**

München Feb. 2006

1.1 Introduction

Underlying principle of the SM is 'Frugality' (if a term does not need to be in the Lagrange density, leave it out)

□ Standard model is not a "shifting target"

Example "neutrino masses are still not part of the SM" -> Why?

(see also section 5 tomorrow)

□ SM topics not covered here:

- ≻ Top
 - •P. Uwer + S. Menke

➢ Bottom

- •A. Buras
- Monte Carlo generators •T. Sjostrand
- This is a talk with experimental flavor but no detectors (see lecture by Hausch.)

1.1 Introduction

What you should remember from your Quantum Field Theory class

Most problems students encounter with SM due to QFT in general not specific to SM. Good review of QFT:

Zee, QFT in a Nutshell, Princeton University Press 2003, 518 pages

- A specific QFT is defined by its Lagrange density and by transformation behavior of fields.
- The Lagrange density exhibits local gauge symmetry
- Most QFTs do NOT work right out of the box. They require regularization and renormalization. coupling strengths (and masses) become scale-dependent (no more coupling *constants*).

Example: $\alpha_{QED} = 1/137$ at low energy and 1/129 at m(Z⁰).

The Standard model is a QFT with a specific lagrange density which is parameterized by 19 free parameters - measured with varying accuracy. Worst-known parameter is probably M_{Higgs}

München Feb. 2006

München Feb. 2006

1.1 Introduction

Standard Model Gauge Symmetry

Local Gauge Symmetry:

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

Color-degree of freedom (quarks)

Weak Isospin (quarks+lepton+Higgs) Hypercharge (quarks+lepton+Higgs)

> München Feb. 2006

1.2 Standard Model Lagrange Density
Gauge
$$-\frac{1}{4}W_{\mu\nu}^{a}W_{a}^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu} \frac{G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g_{s}f_{abc}G_{\mu}^{b}G_{\nu}^{c}}{+\overline{L}\gamma^{\mu}\left(i\partial_{\mu} - g \frac{1}{2}\tau_{a}W_{\mu}^{a} - g'\frac{Y}{2}B_{\mu}\right)L} + \overline{R}\gamma^{\mu}\left(i\partial_{\mu} - g \frac{1}{2}\tau_{a}W_{\mu}^{a} - g'\frac{Y}{2}B_{\mu}\right)R} + \overline{q}_{\mu}\gamma^{\mu}\left(i\partial_{\mu} - g \frac{1}{2}\tau_{a}W_{\mu}^{a} - g'\frac{Y}{2}B_{\mu} - g_{s}T_{a}G_{\mu}^{a}\right)q_{L} + \overline{q}_{R}\gamma^{\mu}\left(i\partial_{\mu} - g'\frac{Y}{2}B_{\mu} - g_{s}T_{a}G_{\mu}^{a}\right)q_{R} + \overline{q}_{R}\gamma^{\mu}\left(i\partial_{\mu} - g'\frac{Y}{2}B_{\mu} - g_{s}T_{a}G_{\mu}^{a}\right)q_{R}$$
Higgs
$$+ \left|\left(i\partial_{\mu} - g \frac{1}{2}\tau_{a}W_{\mu}^{a} - g'\frac{Y}{2}B_{\mu}\right)\phi\right|^{2} - \left(-\mu^{2}\phi^{2} + \lambda\phi^{4}\right) - \left(G\overline{L}\phi R + hermitian \ conjugate\right) - \left(G\overline{L}\phi R + hermitian \ conjugate\right) + C(G\overline{L}\phi^{a}) + C(G\overline{$$

1.2 SM Lagrange Density

Standard Model Lagrange Density

Feb. 2006

1.2 SM Lagrange Density

Standard Model Lagrange Density

1.3 Symmetry breaking in the SM

 \Box SU(2)_L is spontaneously broken

- Flavor and CP are explicitly broken by Yukawa couplings
- Chiral symmetry in QCD is dynamically broken
- No anomalous symmetry breaking

(SM is anomaly free)

(notation according to Zee, QFT i.a.N., Princeton University Press (2003))

München Feb. 2006

Higgs Mechanism

- □ More details see talk by W.Kilian
- **D** Potential V(ϕ) minimal for $\phi \neq 0$.
- Symmetry breaks spontaneously
 → non-zero vacuum expectation value (vev) for φ:

We consider fluctuation around this minimum

- □ Breaking of rotational symmetry leads to goldstone bosons that are absorbed by W⁺,W⁻,Z⁰ (3rd polarization degree) → gauge bosons become massive
- Excitations of the Higgs field around minimum lead to Higgs particle d.o.f.

1.3 Symmetry breaking in the SM

□Counting of degrees of freedom: ϕ has two complex = 4 real d.o.f. , W+,W-,Z0 absorb three, one real remains → Higgs boson

München Feb. 2006 15

1.4 Charges + Weinberg Angle

□ Electric Charge = linear combination of I_3 and Y which couples not to vev $Q = I_3 + Y/2$ U(1)_{em} remains unbroken

□ Photon is linear combination of W₃ and B

 $A_{\mu} = \cos \vartheta_W B_{\mu} + \sin \vartheta_W W_{\mu}^3 \qquad \tan \vartheta_W = \frac{g'}{g}$

Table of Charges

Left- handed	Y	I ₃	Q	Right- handed	Y	I ₃	Q	
v _e	-1	1/2	0	v _e	-	_	_	
e⁻	-1	-1/2	-1	e⁻	-2	0	-1	
u	1/3	1/2	2/3	u	4/3	0	2/3	
d	1/3	- 1/2	-1/3	d	-2/3	0	-1/3	he 00

16

1.4 Couplings + Weinberg Angle

Quantum Chromodynamics

□ Gluons carry color-charge $3 \otimes \overline{3} = 8 \oplus 1$

Color flux (must match at vertex)

- □Gauge structure can be expressed by color factors, Eigenvalues of Casimir operators invariant under SU(3)_C transf. → observables
- □N-colors "known" from Quark model of Hadrons and from $\sigma(e^+e^- \rightarrow hadrons)$

München Feb. 2006

Color factors from four-jet events

G.Abiendi et al, Eur.Phys.J.C20:601-615,2001

A.Heister et al, Eur.Phys.J.C27:1-17,2003 München Feb. 2006

1.5 Quantum Chromodynamics

Section 2

Experimental Verification of QCD

□ 2.1 Factorization at Hadron Colliders □ 2.2 Parton Distribution Functions **2.3 QCD @ Tevatron** 2.4 QCD @ LEP □ 2.5 QCD @ Hera \Box 2.6 $\alpha_{\rm S}$ (Q²) □ 2.7 QCD @ LHC

> München Feb. 2006 20

2.1 Factorization at Hadron Colliders

Cross section for hadron-hadron scattering h1 + h2 \rightarrow H + X

$$\sigma(p_1, p_2; Q, \{\ldots\}) = \sum_{a,b} \int_{x_{\min}}^{1} dx_1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; Q, \{\ldots\}; \mu_F^2)$$

+soft corrections $O(\Lambda_{QCD}/Q)$

- Factorization formula, see also (J.C.Collins, D.E.Soper, G.Sterman "Perturbative Quantum Chromodynamics" World Scientific 1989) convolution of process-independent bound state effects (proton structure) and partonic cross sections (perturbative series expansion)
- □ parton distributions $f_{a/h1}(x_1, \mu_F)$ process-independent Momentum sum rule: $\sum_a \int_0^1 dx \, x \, f_a(x, \mu^2) = 1$
- □ Factorization scale μ_F and renormalization scale μ_R usually <u>chosen</u> to be the same and equal to the scale of the process Q

München Feb. 2006

Partonic cross sections \Box Fixed order expansionUsual choice $\mu_R = \mu_F$

$$\begin{split} \hat{\sigma}(p_1, p_2; Q, \{Q_1, \ldots\}; \mu_F^2) = & \alpha_{\rm S}^k(\mu_R^2) \left\{ \hat{\sigma}^{(LO)}(p_1, p_2; Q, \{Q_1, \ldots\}) \\ & + \alpha_{\rm S}(\mu_R^2) \; \hat{\sigma}^{(NLO)}(p_1, p_2; Q, \{Q_1, \ldots\}; \mu_R^2; \mu_F^2) \\ & + \alpha_{\rm S}^2(\mu_R^2) \; \hat{\sigma}^{(NNLO)}(p_1, p_2; Q, \{Q_1, \ldots\}; \mu_R^2; \mu_F^2) + \ldots \right\} \end{split}$$

- Leading order (LO)
 Next-to-leading order (NLO)
 K-factor correction K=σ(NLO)/σ(LO) ~ 1-1.5
 In presence of largely differing scales:
 Leading Log (LL) resummations (ln(Q²/μ²) α_s(Q²))ⁿ
 - > Next-to-Leading-Log (NLL) $\alpha_s(Q^2) (\ln(Q^2/\mu^2) \alpha_s(Q^2))^n$
- **Parton shower calculations** (see also Talk by T.Sjostrand)

München Feb. 2006

2.2 Parton Distribution Functions

PDF Fits

□ Main contenders: MRST and CTEQ (both use NLO)

- > MRST: hep-ph/0110015 (MRST 2001) → low Scale Q_0 =1.0 GeV
- > CTEQ: hep-ph/0201195 (CTEQ6M) → low Scale Q_0 =1.3 GeV
- ➢ Disagreement on sensitivity to $\alpha_s(M_z)$ [see hep-ph/0512167] MRST: $\alpha_s(M_z^2)$ = 0.119 ± 0.002 (expt.) ±0.003 (theory).
- □Input D.I.S. + Tevatron jets + Fixed target + ...

Constraints

- *F* ≥ 0 (problematic as distributions evolve to lower Q²)
 Momentum sum rule
- Parton distributions parameterized at one scale Q₀ and evolved with DGLAP

$$\frac{d f_a(x,\mu^2)}{d \ln \mu^2} = \sum_b \int_x^1 \frac{dz}{z} P_{ab}(\alpha_{\rm S}(\mu^2),z) f_a(x/z,\mu^2)$$

P_{ab}: Altarelli-Paresi splitting functions computable in pQCD

München Feb. 2006

2.2 Parton Distribution Functions

CTEQ Fit to H1 Data

Fitted at Q² = 100 GeV² and extrapolated with DGLAP

München Feb. 2006

26

2.2 Parton Distribution Functions

Fit to D0 jet cross section

2.2 Parton Distribution Functions

München Feb. 2006

2.2 Parton Distribution Functions

Feb. 2006

2.3 QCD @ Tevatron

Fermilab

DØ Detector

CDF Detector

München Feb. 2006

Azimuthal Angle Correlations

Ideal 2-jet event $\hat{s} = M_{jj}^2 = s x_1 x_2$

$$P_{z(2-jet)} = P_{beam}(x_1 - x_2)$$

More jets (ISR, FSR): $\Delta \phi$ between highest p_T-jets deviates from 180°

München Feb. 2006

35

2.3 QCD @ Tevatron

Dijet Mass

2.3 QCD @ Tevatron

München Feb. 2006

Evolution of $\alpha_s(Q^2)$ at high Energy

München Feb. 2006

37

2.3 QCD @ Tevatron

σ_{bb} @ Tevatron

What happened to the Tevatron bbexcess?

(for a nice review see M.Cacciari, hep-ph/0407187)

- Even light b-squarks were postulated to explain excess
- Excess was also "seen" in twophoton evts and at HERA

However...

- Theory uncertainties were not always taken into account
- Older Tevatron analyses compared σ vs pT(b-quark)
- Newer analyses use physical quantities: E(b-jet), pT(B-Hadron), pT(J/Ψ)
- True error assignments to extrapolation in unmeasured regions (low p_T, far forward region)

München Feb. 2006

München Feb. 2006

39

2.3 QCD @ Tevatron

σ_{bb} @ Tevatron

Run-II Data, physical quantity $pT(J/\psi)$, low need for extrapolation into unmeasured region (cross section truncated in pT and y)

Improved calculations with reduced theory errors

Updated b-fragmentation functions from LEP

Good agreement between Data and Theory

Exp. Data went up a little, but are in agreement with older data

FONLL= Fixed Order NLO calc. with massive quarks plus matching to NLL resummation M. Cacciari, M.Greco, P.Nason hep-ph/9803400

München Feb. 2006

 $J/\psi \rightarrow \mu^+ \mu^-$

München Feb. 2006

41

2.3 QCD @ Tevatron

2.4 QCD @ LEP

□LEP-I ~4 Million hadronic evts per experiment (200 pb⁻¹) on and around Z-resonance □LEP-II ~800 pb⁻¹ between $130 - 209 \text{ GeV E}_{cm}$ **Well-defined** initial state \triangleright precision measurements of $\alpha_{\rm S}$ ➤tuning of Fragmentation models

> München Feb. 2006

Jet Rates

Durham jetfinding scheme

Event Shape Variable Thrust

Rule of Thumb:

accuracy inverse prop. to N_{had} in initial state

□ α_s in τ-decays: from differential cross sections τ→hadrons using identified final states

> München Feb. 2006

Flavor-independence of α_{S}

 $m_b(M_{Z^0}) = (2.82 \pm 0.02 \text{ (stat.)} \pm 0.37 \text{ (sys.)}) \text{ GeV}$

München Feb. 2006

α_{S} at higher energies

München Feb. 2006

W cross section @ LHC

- A.D.Martin, R.G. Roberts,
 W.J. Stirling, R.S.Thorne,
 hep-ph/9907231
- $\Box \Delta \sigma(W)=5\%$ due to PDF uncertainties

Typical LHC event

München Feb. 2006

Minimum bias evts in Tevatron data

Beam profile in z Tevatron ~33 cm LHC ~ 7 cm

