How to have your cake and eat it

Inverting a sum of small matrices

Stefan Kluth

MPI fir Physik

ID Performance WS
24.10.2005

The LLS Alignment Fit

General solution for alignment parameters a, initial values a,
track residuals r with error matrices V,d acobi (derivative)

matrices H = dri /da; index 1 counts events:
- k 17T \7 -1 1 k 1. i k -1
ak - ao - (Z1:1 Hi Vi Hi) Z1:1 Hi Vi ri - ao Ck Zi:l Hi Vi ri

Correspondence to Kalman filter; consider a_-a__:

p/

a=a +-C H V “r Update formula with “gain matrix’

C'=C "'+H'V'H Error propagation

k k-

Interesting (= CMS), but not essential to matrix inversion

Iterative Matrix Inversion

Start from error propagation: C ' =C_ "+ H 'V " H (1)

k-

C'=C _"(1+C_HT'V'H)

k

C=(1+C_H"V"'H)'C ;Taylor Expansion of (1+£)"
Ck ~(1- Ck-l HkT Vk_l Hk) Ck-l (2)

Is Taylor expansion justified?

C, (C

k-1

1-C 1)=C_H'V'H =C_C™-1~0=yes

k

Now have iterative update formulas for Ck'1 and C_

Bootstrapping

Need initial value for CO']L in order to start iteration

Physically correct: C = 0, but breaks (2)

Choose C " = 1 = solutionis C =(1+> “H'V'H)’
= Ck'1 =(1+ Zi:lk HiT Vi'1 H)=1+ C'k'1
:>C'k=(C'1k-1)'1=(l-Ck)'leNCk+CkCk

if C_1is sufficiently small. Thus correction for CO'1 = 1 possible

but vanishes asymptotically (k @ «) anyway

Proof of Principle Tests

Tests with 20x20 matrix; add 2x2 “error matrices” (o° = 0.1,
P = 0.5) to random row and column

Accumulate (1) and (2), correct for C0 =1

after n events, calculate Ck'le, calculate true C',

events test 1% order 274 order

10° Ck'le < 3% <0.1%
C=0 3% 1%

100 CIC, <1% <0.1%

CO=O < 1% < 0.1%

Computing/Numerics
e Computing issues
- multiply large matrices once or twice / event
» dim(C) = N = 0(10*), dim(H V' H) = n = O(100)

e N°n ~ O(10") flop/event = 10 s/event on Gflop CPU
= need (embarrasingly) parallel processing?

- job needs > 1 GB RAM

e - 1 GB for matrices + Athena

- seems possible on (large) normal farm
e Numerics

- expect double to be sufficient due to iterations

Computing

* Split data processing and matrix
calculation?

- Athena jobs write H' V' H (O(10 kB/event)

- Dedicated jobs do matrix calculations
- basically the current “big matrix” approach
- but with or without explicit parallel processing

- try to fit into standard system
e CAF or Tier-1/2

- avoid buying + maintaining dedicated system

Parallel Computing

* Embarrasingly parallel processing

- many (Njob) jobs processing same type of data

- straight weighted averages of results

- averaged covariances scaled by l/Njob

- limited by need for finite # events / job
* Explicit parallel processing

- run single job on many processors

- needs dedicated environment
* e.g. MPI integrated into CAF

Conclusions/Outlook

* Invert sum of small matrices iteratively

- avoid numerical problems of direct inversion

- fairly easy to run (embarrasingly) parallel
- should be able to run on CAF or Tier-1/2

* Need studies with larger matrices

— proof-of-principle and flop counting
- real world: Athena

- comparison with direct inversion where
possible

