How to have your cake and eat it

Inverting a sum of small matrices

Stefan Kluth MPI für Physik ID Performance WS 24.10.2005

The LLS Alignment Fit

General solution for alignment parameters \mathbf{a} , initial values \mathbf{a}_0 , track residuals \mathbf{r}_i with error matrices V_i , Jacobi (derivative) matrices $H_i = d\mathbf{r}_i/d\mathbf{a}$; index i counts events:

$$\mathbf{a}_{k} = \mathbf{a}_{0} - (\sum_{i=1}^{k} \mathbf{H}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{H}_{i}^{T})^{-1} \cdot \sum_{i=1}^{k} \mathbf{H}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{r}_{i} = \mathbf{a}_{0} - C_{k}^{T} \sum_{i=1}^{k} \mathbf{H}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{r}_{i}$$

Correspondence to Kalman filter; consider \mathbf{a}_k - \mathbf{a}_{k-1} :

$$\mathbf{a}_{k} = \mathbf{a}_{k-1} + -C_{k-1} H_{k-1} V_{k-1}^{-1} \mathbf{r}_{k-1}$$
 Update formula with "gain matrix"

$$C_k^{-1} = C_{k-1}^{-1} + H_k^T V_k^{-1} H_k$$
 Error propagation

Interesting (→CMS), but not essential to matrix inversion

Iterative Matrix Inversion

Start from error propagation:
$$C_k^{-1} = C_{k-1}^{-1} + H_k^T V_k^{-1} H_k$$
 (1)

$$C_{k}^{-1} = C_{k-1}^{-1} (1 + C_{k-1} H_{k}^{T} V_{k}^{-1} H_{k})$$

$$C_k = (1 + C_{k-1} H_k^T V_k^{-1} H_k)^{-1} C_{k-1}$$
; Taylor Expansion of $(1+\epsilon)^{-1}$

$$C_{k} \approx (1 - C_{k-1} H_{k}^{T} V_{k}^{-1} H_{k}) C_{k-1}$$
 (2)

Is Taylor expansion justified?

$$C_{k-1} (C_{k}^{-1} - C_{k-1}^{-1}) = C_{k-1} H_{k}^{T} V_{k}^{-1} H_{k} = C_{k-1} C_{k}^{-1} - 1 \approx 0 \Rightarrow yes$$

Now have iterative update formulas for C_k^{-1} and C_k

Bootstrapping

Need initial value for C_0^{-1} in order to start iteration

Physically correct: $C_0^{-1} = 0$, but breaks (2)

Choose
$$C_0^{-1} = 1 \Rightarrow solution is C_k = (1 + \sum_{i=1}^k H_i^T V_i^{-1} H_i)^{-1}$$

$$\Rightarrow C_k^{-1} = (1 + \sum_{i=1}^k H_i^T V_i^{-1} H_i) = 1 + C_k^{-1}$$

$$\Rightarrow$$
 C'_k = (C⁻¹_k - 1)⁻¹ = (1 - C_k)⁻¹ C_k \approx C_k + C_k C_k

if C_k is sufficiently small. Thus correction for $C_0^{-1} = 1$ possible but vanishes asymptotically $(k \rightarrow \infty)$ anyway

Proof of Principle Tests

Tests with 20x20 matrix; add 2x2 "error matrices" (σ^2 = 0.1, ρ = 0.5) to random row and column

Accumulate (1) and (2), correct for $C_0 = 1$ after n events, calculate $C_k^{-1}C_k$, calculate true C_k' ,

events	test	$1^{ ext{st}}$ order	$2^{ ext{nd}}$ order
10^3	$C_k^{-1}C_k$ $C_0 = 0$	< 3% 3%	< 0.1% 1%
10^4	$C_k^{-1}C_k$ $C_0 = 0$	< 1% < 1%	< 0.1% < 0.1%

Computing/Numerics

- Computing issues
 - multiply large matrices once or twice / event
 - $\dim(C) = N = O(10^4), \dim(H_i^T V_i^{-1} H_i) = n = O(100)$
 - $N^2n \sim O(10^{10})$ flop/event $\Rightarrow 10$ s/event on Gflop CPU \Rightarrow need (embarrasingly) parallel processing?
 - job needs > 1 GB RAM
 - ~ 1 GB for matrices + Athena
 - seems possible on (large) normal farm
- Numerics
 - expect double to be sufficient due to iterations

Computing

- Split data processing and matrix calculation?
 - Athena jobs write $H_i^T V_i^{-1} H_i$ (O(10 kB/event)
 - Dedicated jobs do matrix calculations
 - basically the current "big matrix" approach
 - but with or without explicit parallel processing
 - try to fit into standard system
 - CAF or Tier-1/2
 - avoid buying + maintaining dedicated system

Parallel Computing

- Embarrasingly parallel processing
 - many (N_{job}) jobs processing same type of data
 - straight weighted averages of results
 - averaged covariances scaled by $1/N_{job}$
 - limited by need for finite # events / job
- Explicit parallel processing
 - run single job on many processors
 - needs dedicated environment
 - e.g. MPI integrated into CAF

Conclusions/Outlook

- Invert sum of small matrices iteratively
 - avoid numerical problems of direct inversion
 - fairly easy to run (embarrasingly) parallel
 - should be able to run on CAF or Tier-1/2
- Need studies with larger matrices
 - proof-of-principle and flop counting
 - real world: Athena
 - comparison with direct inversion where possible