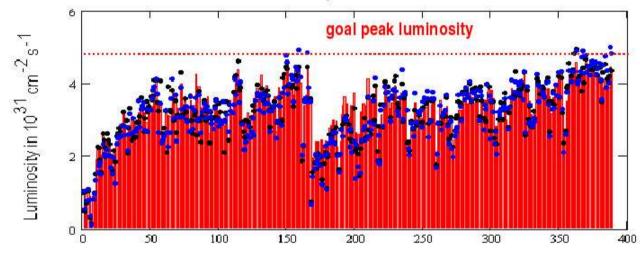
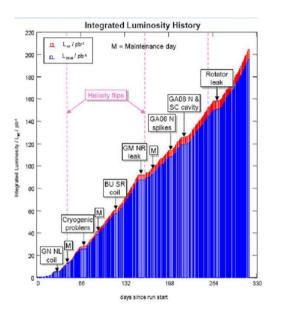


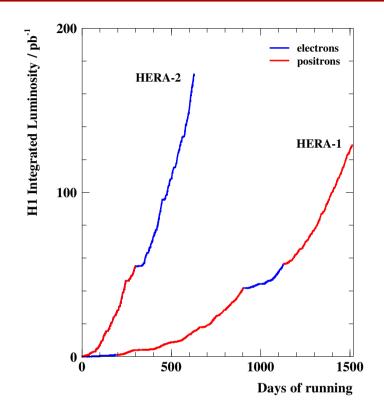
Juraj Bracinik for MPI H1 group


19 dec. 2005

- Introduction
- HERA running
- Status of MPI hardware projects
- Highlights from MPI driven physics analyses
- Near future

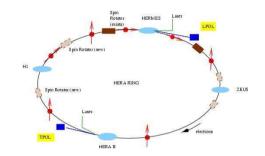
Introduction


H1 experiment - a lot of data to analyze, plan to collect at least as much as we have

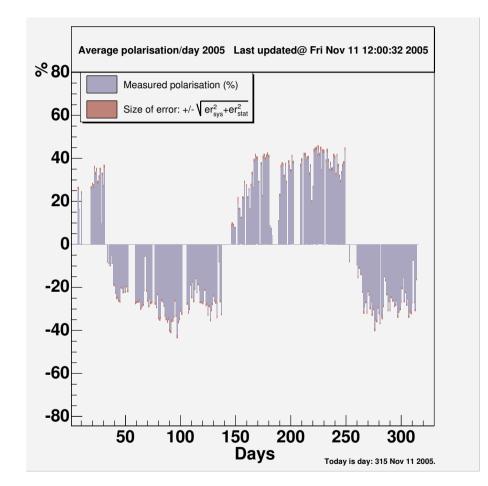

Measured and Modeled Peak Luminosity in the 2005 HERA Electron-Proton Run

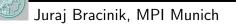
- Number of Runs in 2005
- since end of 2004 smooth running with e^- (mainly e^+ before)
- limited beam currents (background, later RF)
- specific luminosity better then expected (smaller emmitance of proton beam, dynamic reduction of beta function for electron beam)
- \Rightarrow peak luminosity close to (bit smaller than . . .) design value

HERA performance



- at the beginning of the year large p-correlated background (venting of IR during shutdown)
- several vacuum leaks
- cryo problems in february
- BU magnet short problems in march/april
- electronic problems in large PS
- $\Rightarrow\,$ spikes in background rates, reduced HV efficiency




- smooth running from August till November
- in best periods delivered $\sim 1.5 \ pb^{-1}/day$
- in total HERA delivered $\sim 200 \ pb^{-1}$, H1 took with HV on $\sim 120 \ pb^{-1}$
- more than full HERA I. statistics!

HERA performance - Polarization

- longitudinal polarization feature of HERA II
- in 2005 routine running with polarized e^-
- helicity changed several times
- polarization $\sim 40\%$ (colliding bunches), $\sim 50-60\%$ (non-colliding bunches)
- strong beam-beam effect

Stable performance. Main trigger for H1 Physics (in particular high Q^2 NC/CC triggers).

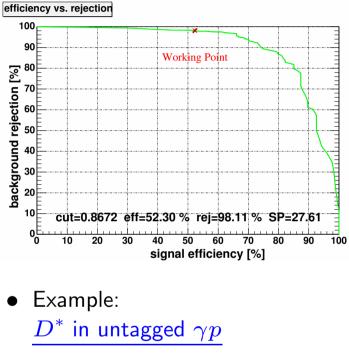
Efficiency for NC close to 100% except:

- \rightarrow closed cells with high contribution to trigger rates (≈ 50 out of 4846 total)
- \rightarrow areas with not functioning t0 modules (≈ 30 , out of 576 total)
- \Rightarrow repair (as much as possible) is planned for this shutdown

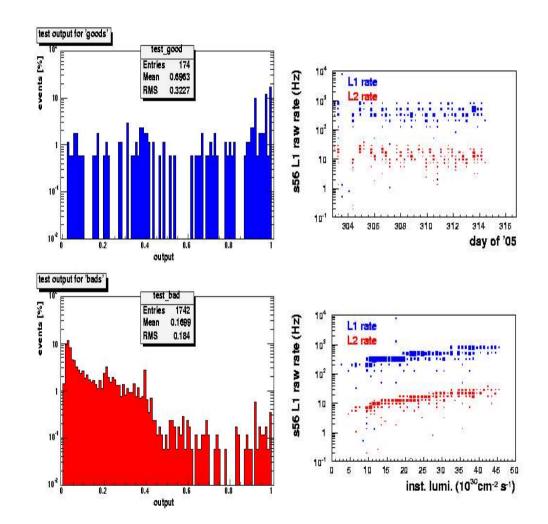
Needs a lot of attention, mainly analog part

- \rightarrow ageing components (power supplies, connectors)
- \rightarrow permanent fight with (mainly) external noise sources

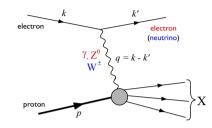
Try to optimize physics output (new triggers):


- new subtrigger for dijets in γp (using E_{weight})
- new subtrigger for very high Q^2 (in development)

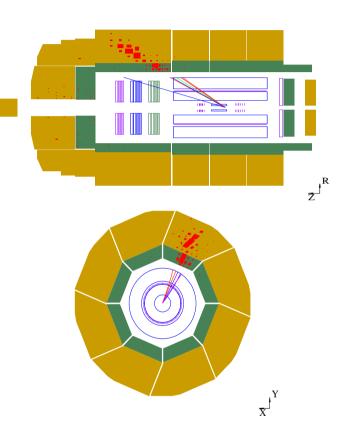
L2 Neural Network Trigger I.

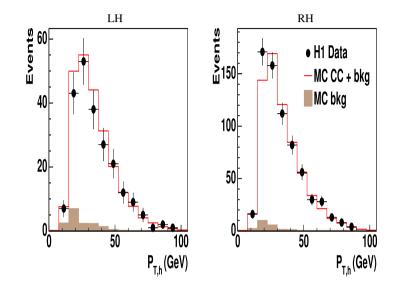

Board	Tr. Element	physics	
00	56	untagged D*s	
01	41	DVCS	
		(IF)	
02	39	Upsilons	
03	41	DVCS	
		(FB/CB)	
04	15	$J/\Psi \to \mu$	
		(inelastic)	
05		free (problems)	
06	40	SPACAL	
		(back-to-back)	
07	78	Charged Current	
08	33	J/Ψ	
		(Track-Cluster)	
09		free	
10	74	DiJets	
11	83	tagged D*	
12	83	DiJets	

- Hardware: very stable system (only concern ageing CNAPS chips)
- New inputs (new L1 trigger systems):
 - Fast Track Trigger (replace $DCR\phi$ trigger)
 - new CIP (replace z-vertex trigger)
 - Jet Trigger (L2NN ready to receive signals)
- Becoming more and more important due to increasing inst. luminosity
- ⇒ many requests from working groups (more than trigger boxes)
 - often the only chance to get given channel

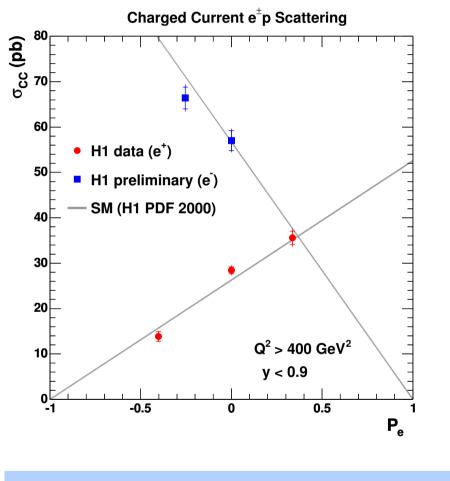

L2 Neural Network Trigger II.

- Efficiency: 52 %
- Rejection: 98 %
- Rate suppression: factor of ~ 20

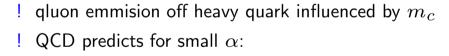

Inclusive measurements - NC/CC I.

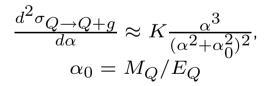

- traditional area of activity in our group
- new:
 - polarization
 - high luminosity
- influences both NC and CC measurements
- ! very clean effect on CC

$$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} = (1 \pm P_e) \frac{G_F^2}{2\pi x} [\frac{M_W^2}{q^2 + M_W^2}]^2 \phi_{CC}^{\pm}$$
$$\phi_{CC}^+ = \overline{u} + \overline{c} + (1 - y)^2 (d + s + b)$$
$$\phi_{CC}^- = u + c + (1 - y)^2 (\overline{d} + \overline{s} + \overline{b})$$
$$P_e = (N_R - N_L) / (N_R + N_L)$$

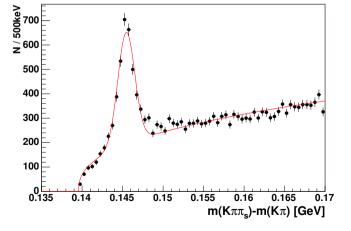

• Linear dependence of the cross section on polarization

Inclusive measurements - NC/CC II.

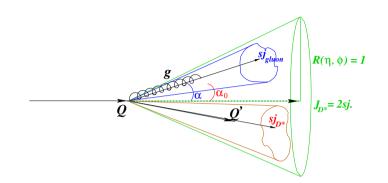

- kinematics reconstruced from hadrons
- data in very good agreement with model
- extrapolated to the full phase space $Q^2>400 {\rm GeV}^2$, y<0.9
- $\bullet\,$ good agreement with SM
- e^+ data published (DESY 05-249)
- NC and e⁻ are in progress (e⁻ preliminary)

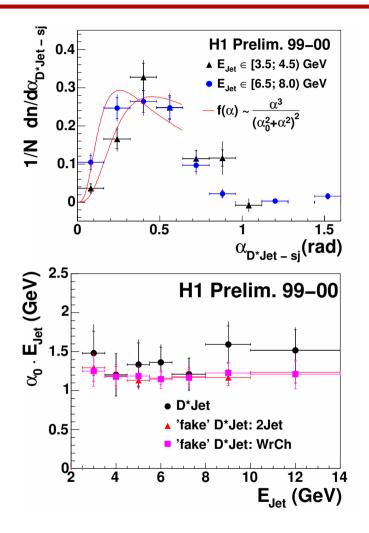


 $\sigma_{CC}({\rm P}_{e}=-1.)=-3.9\ pb\pm 2.3(stat)\pm 0.7(syst)\pm 0.8(pol)$


$$\sigma(p) = \int dz dp_{part} \sigma(p_{part}) D_H^{part}(z) \delta(p - zp_{part})$$

- $\sigma(p_{part})$ perturbative part, $D_{H}^{part}(z)$ nonperturbative fragmentation function
- arbitrary division between $\sigma(p_{part})$ and $D_{H}^{part}(z)$
- usually evolution down to m_c put in $\sigma(p_{part})$, understood?
- $D_H^{part}(z)$ assumed to be universal, valid?
- Charm events tagged by D^* in the golden channel $(K\pi\pi_S)$:




- ! $\alpha < \alpha_0$ dead cone
- \Rightarrow Study internal structure of charm jets

Structure of Charm jets in DIS

- jet algorithm rerun till exactly two subjets are found
- study angle α between the charm jet axis and non-charm subjet
- $\triangleright\,$ distribution in agreement with pQCD formula, fit with α_0 as a free parameter
- $\triangleright~$ from pQCD formula expect $\alpha_0 E_{jet}$ independent of jet energy

Data consistent with pQCD prediction, difference to light jets statistically not significant

Study of Fragmentation Function - H1

Fragmentation function describes the energy transfer from quark to a given meson.

$e^+e^-collisions$

$$ightarrow$$
 natural choice $z = \frac{E_{D^*}}{\sqrt{s}/2} = \frac{E_{D^*}}{E_{beam}}$

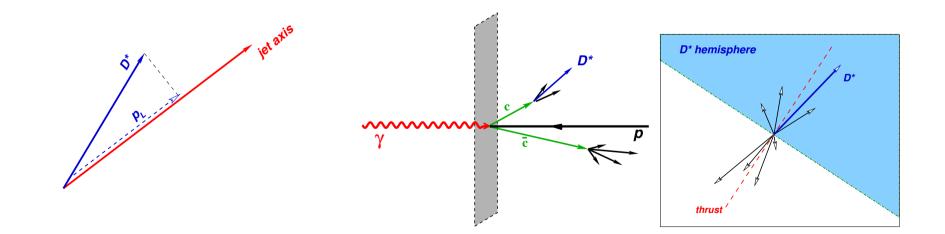
▷ assuming LO processes - direct measurement of non perturbative fragmentation function

ep collisions

- \triangleright choice of z observable not so obvious
- differences: IPS contribution, different kinematics beam energy not known

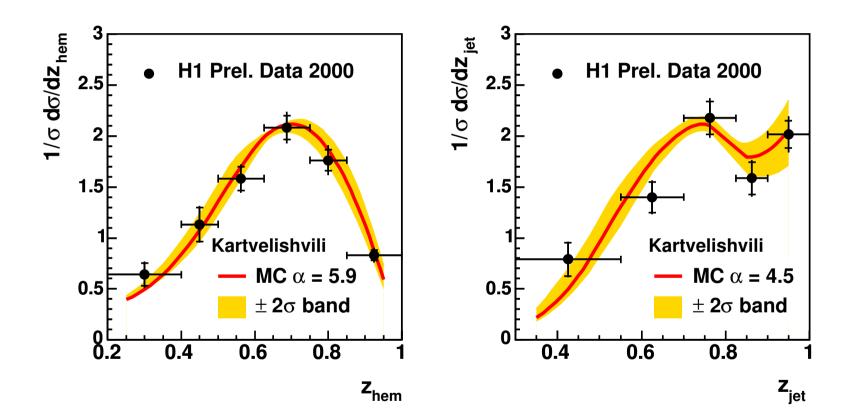
The Experimental Methods

res


Jet Method :

▷ the energy of c-quark is approximated by the energy of the reconstructed D* jet

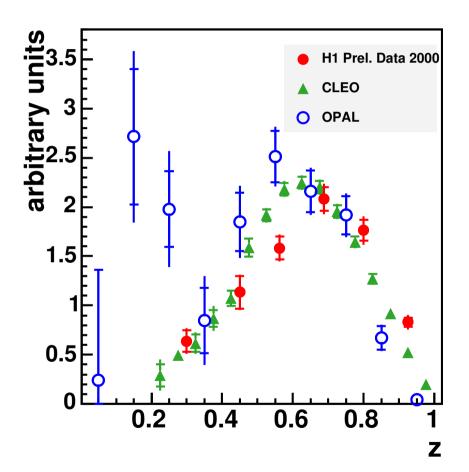
$$z_{jet} = \frac{(E+p_L)_{D^*}}{(E+p)_{jet}}$$


Hemisphere Method :

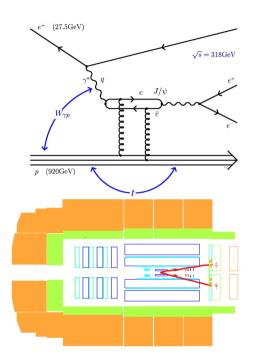
$$z_{hem} = \frac{(E+p_L)_{D^*}}{\sum_{hem}(E+p)}$$

Measured z-distributions with Kartvelishvili parametrization

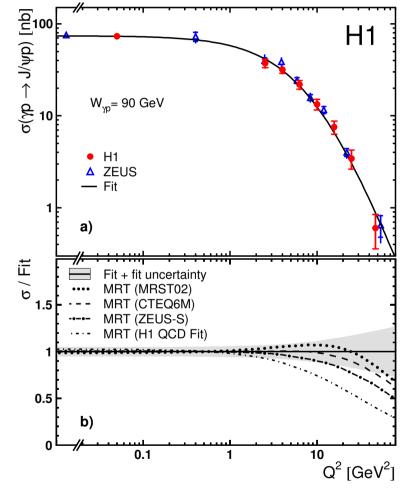
 $RAPGAP/PYTHIA + Kartvelishvili : f(z) \sim z^{\alpha}(1-z)$


Summary of the Fragmentation Function Results

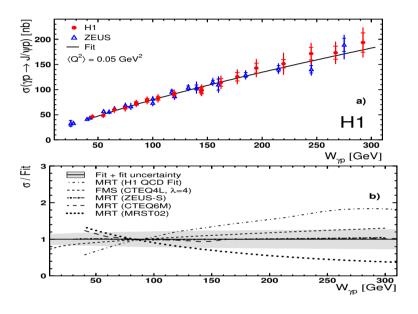
- Kartvelishvili and Peterson parametrizations provide equally good descriptions of the data
- hemisphere method appears to give harder fragmentation function than the jet method


parametrization		Hem. method	Jet method
Peterson	ε	$0.018\substack{+0.004\\-0.004}$	$0.030\substack{+0.006\\-0.005}$
Kartvelishvili	α	$5.9^{+0.7}_{-0.6}$	$4.5^{+0.5}_{-0.5}$

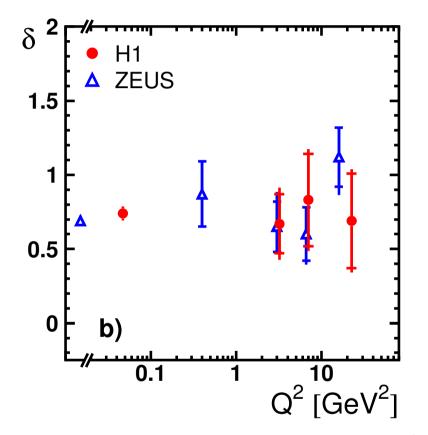
H1 Prel. Data 2000 + RAPGAP/PYTHIA


- \triangleright difference (< 3σ) between hemisphere and jet method result may indicate imperfect MC description of hadronic final state in charm events
- \triangleright z hemisphere and e^+e^- have similar shape
- \triangleright differences between ep and e^+e^- larger then errorbars !
- \Rightarrow dedicated analysis needed !

Elastic J/ψ production I.



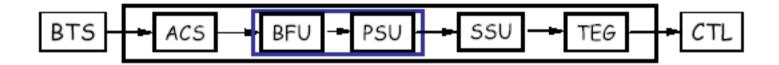
- \Rightarrow clear experimental signature
- \Rightarrow sensitive to g^2 (low x, Q^2)
- $\Rightarrow \text{ results from high } W \text{ analysis in } e \text{ channel} \\ (L.Janauschek, C.Kiesling) \text{ combined with low} \\ W \text{ analysis in } \mu \text{ channel} \end{cases}$
- \Rightarrow both DIS and photoproduction



Excellent agreement with QCD-based models!

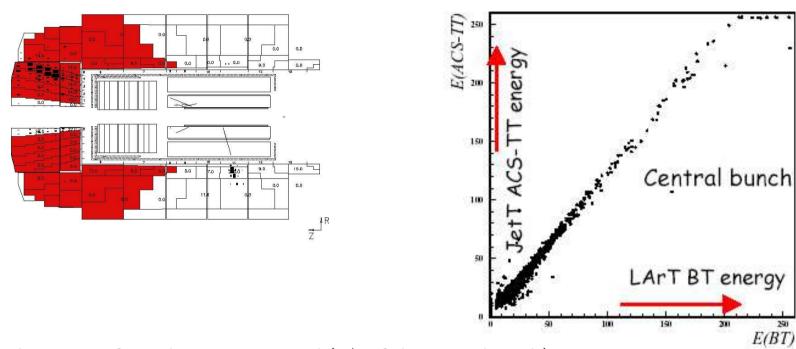
Elastic J/ψ production II.

- nice, consistent data set going up to $300 \; GeV$
- smooth transition between different data sets
- QCD based models are able to describe the data
- strong dependence on input gluon density



• slope of W dependence does not depend on Q^2 (in our range of Q^2)

Jet Trigger I.

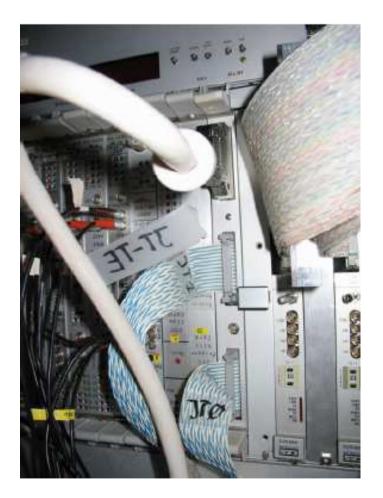

Jet Trigger - an upgrade of L1 Liquid Argon Trigger

- ! searches for localized energy depositions jets ($E_T, heta, \phi$)
- \Rightarrow less sensitive to noise
- \Rightarrow possible to explore correlations between jets

- Hardware installed in Hamburg
 - system in the readout
 - \rightarrow standalone test readout
 - \rightarrow CDAQ readout (most of the system)
 - checked up to sorted list of jets
 - sending test trigger elements to central trigger
 - work ongoing mainly on ACS and TEG

Jet Trigger II. (ACS)

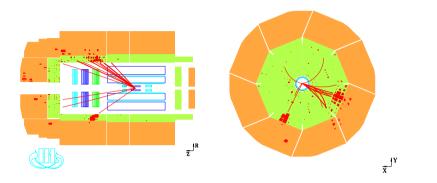
- at the moment forward part instrumented (2/3 of electronic channels)
- ACS in the readout since september 2005
- stable performance
- very good correlation with existing LAr trigger


Jet Trigger III. (TEG, next steps)

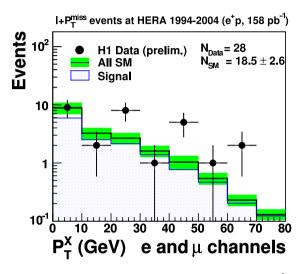
TEG:

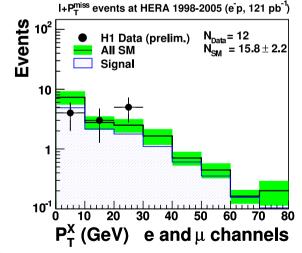
- hardware installed in Hamburg
- sending test trigger elements to CTL
- long-term stability tests ongoing
- work on definition of TE's (PWG's)

Next steps in JT commisioning:


- complete CDAQ readout
- readout stability tests
- fine tuning of hardware
- work on software (loading, simulation)
- instrument full barrel part of calorimeter (ACS, to be competed end of march 2006)
- design of trigger elements (PWG's)
 - \triangleright high Q^2 for NC
 - \triangleright low y for CC
 - $\,\vartriangleright\,$ dijets in γp
 - $\triangleright \ldots$

With new lumi coming we expect first events triggered by JT




Near future I. (there are still some excitements!)

- events with isolated lepton(e or μ) and high missing Pt(> 12GeV)
- in SM dominant process: real W production
- excess mainly in e^+p (3.4 σ)

$P_T^X > 25 \; {\rm GeV}$	$e \; {\sf obs./exp.}$	μ obs./exp.	combined
H1 e^-	$2/2.4 \pm 0.2$	$0/2 \pm 0.3$	$2/4.4 \pm 0.7$
$(121 \ pb^{-1})$			
H1 e^+	$9/2.3\pm0.4$	$6/2.3\pm0.4$	$15/4.6 \pm 0.8$
$(158 \ pb^{-1})$			
ZEUS e^+	$1/1.5\pm0.18$	-	-
$(106 \ pb^{-1})$			

Future HERA running II. (current planning)

- november 2005 february 2006 shutdown, improvements on machine side (in 2005 HERA efficiency $\sim 60\%$, close to HERA I.):
 - exchange all coils of vertical proton bending magnets (BU)
 - improve vacuum systems (mainly close to rotators)
 - improve beam diagnostics
 - magnet current change monitoring
- H1 during shutdown:
 - full silicon back
 - maintenance work on many subsystems
- Future plans:
 - run till june 2007 without big shutdown (~ 450 days of running)
 - change beam charge and several times change of helicity
 - H1 expressed its interest in low energy ep run (direct measurement of F $_L$ and F $_L^D$, ~ 3 months)

If everything goes well, most of luminosity is still to come!

Group members

The Boss:

Allen Caldwell

Staff Scientists:

- Christian Kiesling (group leader)
- Vladimir Chekelian
- Günter Grindhammer
- Gerd Buschhorn (emeritus)

Post Doctoral Scientists:

- Juraj Bracinik
- Ana Dubak
- Bob Olivier
- Jens Zimmermann

Support on all sides:

- Franziska Rudert
- Marlene Schaber

PhD Students:

- Andrej Liptaj
- Andrey Nikiforov
- Ringailė Plačakytė
- Zuzana Rúriková (finished)
- Biljana Antunovič

Engineers:


- Markus Fras
- Werner Haberer
- Joseph Huber
- Miriam Klug
- Andreas Wassatch

Group members

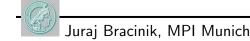
Alexei I. Babaev (1935-2005)

Hardware:

LAr L1: Juraj Bracinik, Christian Kiesling, Andrej Liptaj, Andrey Nikiforov, Zuzana Rúriková + engineers L2NN: Christian Kiesling, Ringailė Plačakytė, Jens Zimermann + engineers JT: Ana Dubak, Christian Kiesling, Bob Olivier, Biljana Antunovič + engineers Engineers: Markus Fras, Werner Haberer, Joseph Huber, Miriam Klug, Andreas Wassatch

Analyses:

Inclusive (NC, CC) measurement: Vladimir Chekelian, Christian Kiesling, Andrey Nikiforov, Bob Olivier, Ringailė Plačakytė, Biljana Antunovič Charm physics: Juraj Bracinik, Günter Grindhammer, Andrej Liptaj, Zuzana Rúriková


Special duties:

<u>Vladimir Chekelian:</u> Physics coordinator <u>Günter Grindhammer:</u> Ringberg workshop organizer <u>Christian Kiesling:</u> Executive Commitee member, run coordinator Juraj Bracinik: LAr coordinator, run coordinator

Conclusions

- Group has ambitious activities in the area of hardware and analysis
- Good support from our director
- Plans
 - till mid 2007 collect as much data as possible
 - analysis of the data 3-5 years afterward

