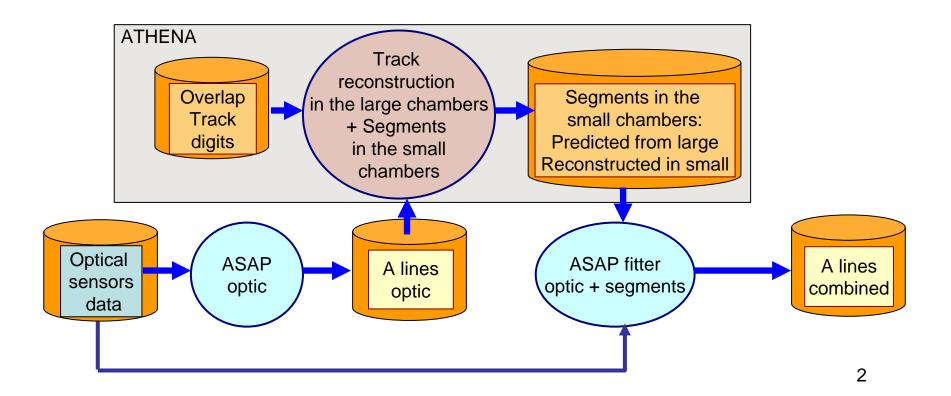
Alignment using high Pt tracks

In parallel (or together) with R-T calibration stream, a track alignment stream has to be setup for the following alignment tasks:

- 1. Small w.r.t. large barrel chambers
- 2. BEE w.r.t. EC chambers
- 3. Endcap Barrel
- 4. BIS8 w.r.t. BIS7
- 5. Inner tracker Muon spectrometer
- 6. TGC w.r.t. EC MDT chamber. Not discussed here

High p_T means: Selected by High p_T Level1 trigger + level2 cut p_T >20GeV For items 1-4, the target precision transverse to the track direction in the bending plane is of the order 30 μ m.


For item 5, a precision of the order $200\mu m$ in the toroid bending plane is sufficient.

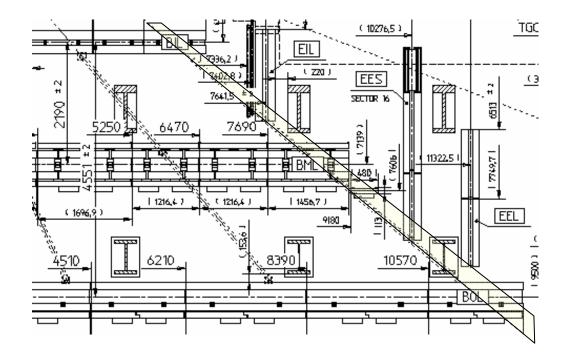
Not discussed here: alignment with field off (or cosmic) straight tracks (considered as an offline "one time" task)

C.Guyot Saclay 29/112005

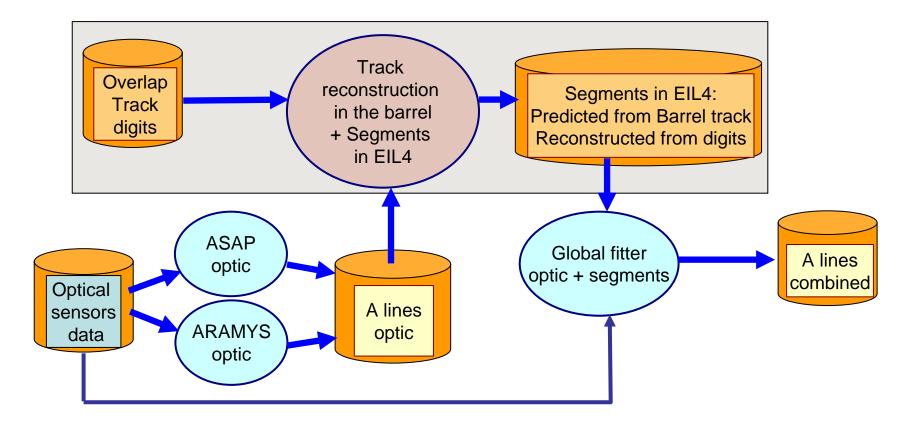
Small-Large barrel chambers

Track selection at level 2: High Pt muon in full overlap (BIS-BIL-BMS-BMLS-BOS-BOL tracks) Selected tracks rate at L=10³³: ~3 Hz (barrel, 200 towers) + ~10 Hz (End caps)
Frequency : every 2 hours (~100 segments per chamber overlap)
CPU requirement: ~ 3-10 PC (~3-10Hz with ~1s per track reconstruction)
Comments : optical alignment and track information are correlated in the final fit
DCS condition database data have to be available

STANDARD BARREL SECTOR BARREL FOOT SECTOR 4010 IRAN OVERLAP MOT 07 5090 IRPC over 9617 B0L-_-01 , 4961,5 lassembled tubel B[L-_-14 OVERLAP RPC .5110+MD veral Trigger zone 3280 [RPC/overall/ N for overlaping tracks BML-_-01 3551,5 (assembled tube) 13 3580 <u>3700 (MDT overally</u> <u>3810 IRAIL</u> <u>15,68</u>° 2820 IMDT overall [2770 (RAFL) — 2671,5 Issgembled tubal (1 MDT overlap (A) 1260 IRAN

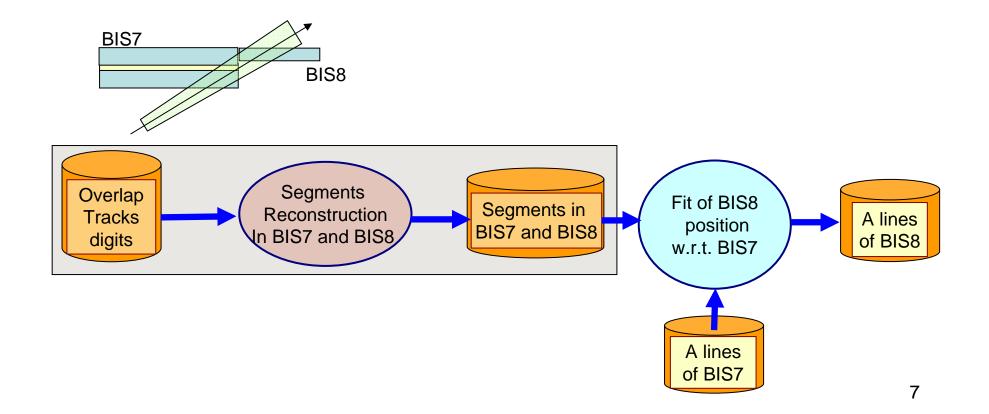

BEE / EC chambers

Track selection at level 2: High Pt muons in the overlap EIS-BEE-EMS-EOSSelected tracks rate at L=10³³: ~10Hz (1.45<| η |<1.70, 30% of 2 π)Frequency: every 2 hours (~1000 segments per BEE in the edge zones)CPU requirement: ~ 3 PC (~3Hz with ~1s per track reconstruction)Comments: Only tracks crossing the edges of BEE chambers should be considered



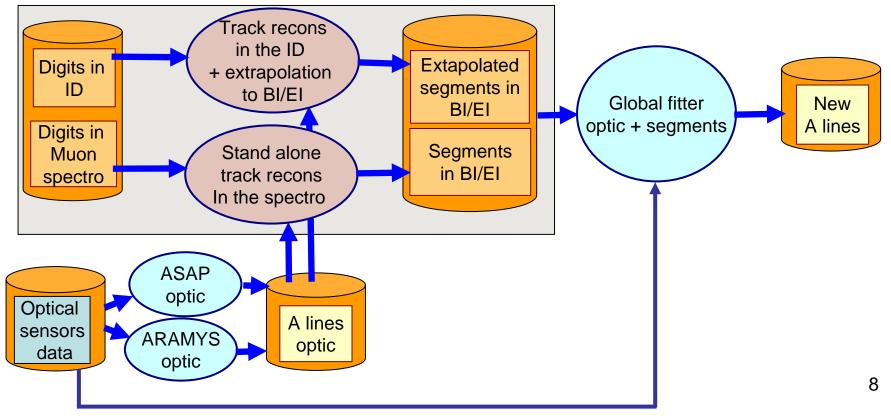
Endcap / Barrel (1)

Track selection at level 2: High Pt muons in the overlap BIL6-EIL4-BML6-BOL6 Selected tracks rate at L=10³³: ~4Hz ($\Delta\eta$ ~0.05, $\Delta\phi$ ~60% of 2 π) Frequency : every 2 hours (~1000 segments per EIL4) CPU requirement: ~ 4 PC (~4Hz with ~1s per track reconstruction) Comments : The final fit involves both barrel and EC optical data in additions to the segments in EIL4. The fitted objects could be barrel layers + EC bars. With EEL: tracks in the overlap BIL6-EIL4-EEL2-EML5 also possible.



Endcap / Barrel (2)

BIS8 / BIS7


Track selection at level 2: High Pt muons in the overlap BIS7-BIS8 Selected tracks rate at L=10³³: ~1Hz ($\Delta\eta$ ~0.05, $\Delta\phi$ ~20% of 2 π) Frequency : every 4 hours (~1000 segments per BIS8) CPU requirement: ~ 1 PC (~1Hz with ~1s per segment reconstruction) Comments : The segments could the same as those used for R-T calibration

Muon spectrometer w.r.t. inner detector

Event selection at level 2: Event with a very high Pt muons (e.g. > 50 GeV) both in ID and muon spectro Selected event rate at L= 10^{33} : >10Hz (from W/Z events) + pre-selection Frequency : every 6 hours (~10000 tracks required to achieve the precision) CPU requirement: ~ 5 PC (~0.5 Hz with ~1s per track reconstruction) Comments : The final fit involves both barrel and EC optical data in additions to the

Comments : The final fit involves both barrel and EC optical data in additions to the segments in BI/EI. The fitted objects could be barrel layers + EC bars.

Conclusions/comments

• At lower luminosity (or if a detailed analysis shows tat the rates are much lower than anticipated), tracks selected at level2 with a lower p_T cut (e.g. >10GeV) can be used.

Total rate of selected events for alignment with tracks should be ~ 30Hz (L=10³³)
CPU time is dominated by the full track reconstruction: ~20-40 PC are required (<10% of calibration load)

• As expressed in the updated LOI, these alignment tasks would be worked out in tier-2 calibration centers.

- •The various tasks could be split as follow:
 - Optical alignment (ASAP/ARAMYS) : at ATLAS Point1
 - Track + segment reconstruction: in Tier2
 - Combined fits using segments + optical information : Tier2

• Alignment specific developments will start at MPI Munich tier2. A collaboration with Saclay has been started to cover the issues of trigger rates in the alignment stream (detailed study with full MC simulations), specific track/segment reconstruction, combined track/optical sensors fits,...

• DC3/CSC simulation data with in a step first ideal detector geometry and later with "as built" detector geometry should be used as a starting point. Realistic rates and efficiencies have to be worked out.

• EDM should be updated to include the notion of extrapolated segment