

## Update on KtJets from postrome dijet events

- matching of truth and reco jet
- comparison with particle truth
- comparison with calibration hit truth

# Next steps

#### KtJets from postrome dijet events

#### In order to have quick turnarounds I use KtJet standalone on top of CBNT containing:

- \_topo clusters from calibrated CaloTopoCluster container with AddCellDetails
- \_topoC calibration hit info from CaloTopoCluster-preLocalCalib container
- TRUTH info
- So far I've processed only the postrome J4 samples from Pavol with 11.0.0 and produced CBNTs for them on castor: /castor/cern.ch/user/m/menke/ postrome\_11.0.0.003037.recocalibnew.J4\_Pt\_140\_280/
- Settings I used for KtJet on \_topo clusters:
  - Cut on cluster input:  $E_{\perp} > 0$
  - KtJet-settings: pp,  $\Delta R < 0.7$ , *E*-recombination scheme

#### Settings I used for KtJet on TRUTH

- only stable particles: KLDauNt == -1
- within the calorimeter acceptance: |EtaGen|<5
- same KtJet-settings as for clusters

#### KtJets from postrome dijet events > Example

- ▶ KtJet with  $\triangle R < 0.7$ ,  $E_{\perp}^{clus} > 0$  and *E*-recombination scheme in dijet events with 140 GeV <  $p_{\perp} < 280$  GeV
  - the 6 leading jets in  $E_{\perp}$  are shown as colored cell borders
  - left plot shows LArEM, right plot Tile



#### KtJets from postrome dijet events > Input to KtJet

▶ Input to KtJet for the dijet events with 140 GeV  $< p_{\perp} < 280$  GeV

- for reco: all \_topo clusters on the CBNT
- for truth: all stable TRUTH particles within  $|\eta| < 5$
- plot shows the correlation of both quantities
- there is a fraction of the events (between Event 7700 and 10100, excluded from the plot) with much more clusters per generated particles – need to be investigated ...
- Number of topo clusters 600 200 180 500 160 140 400 120 300 100 80 200 60 40 100 20 0 200 400 600 800 1000 1200 1400 Ω Number of stable TRUTH particles with |n| < 5

#### KtJets from postrome dijet events > 2 kinds of truth

- Comparing reco with truth has two very different meanings:
- > You can compare to a jet made out of the TRUTH particles if it matches in  $\eta$  and  $\phi$  with the reco jet
  - the truth jet contains low  $p_{\perp}$  charged particles not reaching the calorimeters
  - the truth jet looses and gains some low  $p_{\perp}$  particles to/from other jets
  - all particles have full energy in the truth jet including dead material,  $\mu$ ,  $\nu$ , K<sub>L</sub> etc.

#### You can compare to the calibration hit level of the cells inside the jet

- no matching to be done exact one-to-one relation
- only hits reaching the calorimeter and depositing energy there are accounted for
- dead material is excluded

#### Both comparisons are valuable

- the comparison to the TRUTH jet shows how many corrections are still missing to come from the calorimeter level to the TRUTH level
- the comparison to the calib hits inside the jet shows how far jet-definition independent calibrations bring us

## Comparison of local calibrated jets and MC truth

## Check global quantities

- Number of topo jets vs. number of TRUTH jets
- $\sum E_{\perp}^{\text{topo}}$  vs.  $\sum E_{\perp}^{\text{truth}}$



## **Comparison ... > matching of topo and TRUTH jets**

use all pairs of topo and TRUTH jets in the event with

- $|\eta_{
  m truth} \eta_{
  m topo}| <$  0.2 and
- $|\phi_{\text{truth}} \phi_{\text{topo}}| < 0.2$



## Comparison ... > MC particle TRUTH and calibration hit truth

# ► ratios of $E_{\perp}$ for the matched jets as function of $E_{\perp}^{\text{truth}}$ (left) and $\eta^{\text{truth}}$ (right) for

- calibrated topo jets over the calibration hit truth (full blue dots)
- raw topo jets over the calibration hit truth (full red dots)
- calibrated topo jets over the matched particle truth (open blue dots)
- raw topo jets over the matched particle truth (open red dots)



We probably need to offer some jet-style weights to be used on-top of jets made of topo clusters with the local hadron calibration for the period before propper handling of dead material corrections in the local hadron calibration is available

## This would be:

- a jet-style cell weight tool
- containing cell weights for presmpler and gap scintillators
- dead material corrections i.e. the cryo term
- out-of-jet corrections i.e. the jet scale

# I'll try to produce this based on KtJet

- would need feedback about parameters for the jet algo to use I could switch to the ATLAS default  $\Delta R < 1 \dots$
- also good would be some comments on the used truth jets some particles to exclude? ...