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Experimental validation of MSSM

• A check can be obtained comparing observables’ theoretical
calculation with direct measures:

σ, AFB, ALR . . .
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Experimental validation of MSSM

• A check can be obtained comparing observables’ theoretical
calculation with direct measures:

σ, AFB, ALR . . .

• This analysis is complicated by the great number of parameters in
the MSSM’s lagrangian (∼105)

• Hypotheses about SUSY breaking reduce this number

e.g.





mSUGRA 5 parameters
cMSSM 4 parameters

but these are ad hoc hypotheses. . .
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• Is it possible to simplify this analysis?

� High energy limit (Ec.m. �M ) is promising.

i.




Beyond production threshold
local effects and
resonances disappear


⇒




In this limit, corrections
are described in terms
of “simple” functions




ii.




Many soft parameters
are negligible
at high energies


⇒




Indipendence on unknown
parameters beyond SUSY
breaking mechanisms




iii.




∼ helicity conservation
at high energy (kinematic
and dynamic reasons)


 ⇒




Many amplitudes are
negligible (at tree
level and beyond . . . )
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• Is it possible to simplify this analysis?

� High energy limit (Ec.m. �M ) is promising.
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High energy limits: motivations

• Is it possible to simplify this analysis?

� High energy limit (Ec.m. �M ) is promising.

• Is this limit reliable at LHC?

� It is not unreasonable in some MSSM scenarios (∼SPS 4)
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Sudakov logarithms: general structure

At L loops electroweak corrections of many processes have an
asymptotic limit of the form (s = E2

c.m., αW = e2

4π sin2 θW
):

A = ABorn

(
1 +

L∑

`=1

α`
W

2∑̀

k=1

c`,k logk
( s

M2

))
+ . . .
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• A lot of relevant processes have such a simple asymptotic
expansion:
� ILC processes:
e+e− → ff, χ0χ0, χ+χ−, H+H−,W+W− . . .
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c.m., αW = e2

4π sin2 θW
):

A = ABorn

(
1 +

L∑

`=1

α`
W

2∑̀

k=1

c`,k logk
( s

M2

))
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• A lot of relevant processes have such a simple asymptotic
expansion:
� ILC processes:
e+e− → ff, χ0χ0, χ+χ−, H+H−,W+W− . . .

� LHC (partonic) processes:



tt production: gg → tt, qq → tt

single top production: bq → tq′, qq → tb, bg → tW−, bg → H−t
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(not so) Short guide to Sudakov logarithm

• Sudakov logarithms’ 1 loop expression: Ae.w. =
(
1 + α

π
NLO

)
ABorn.

NLO = cU
(
n log

s

M2
W

− log2 s

M2
W

)
+ cb log

s

M2
W

+ cY log
s

m2
t

+ cRG log
s

M2
W
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• Diagrammatic origin:
� For each coefficient c, gauge invariant combinations of vertex’s
corrections, self-energies and boxes

for example:

Z, γ
Z

f

f

Z Z

f f’

f’f
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• Contribution to observables
� In the case of LHC-processes at high values of √s electroweak
corrections are comparable with NLO QCD ones.
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• Contribution to observables
� In the case of LHC-processes at high values of √s electroweak
corrections are comparable with NLO QCD ones.
� At √s ≥ 1 TeV these terms:
 Give corrections to cross

sections at the level of 10 − 30%


⇒


 These contributions

are detectable at LHC
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• Contribution to observables
� In the case of LHC-processes at high values of √s electroweak
corrections are comparable with NLO QCD ones.
� At √s ≥ 1 TeV these terms:
 Give corrections to cross

sections at the level of 10 − 30%


⇒


 These contributions

are detectable at LHC




⇓
 At ILC resum-

mation issues







Available resummations
at log NLO i.e. log2L s

M2

W

,

log2L−1 s
M2

W
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• Evaluation of tanβ

�


 Aforementioned observables

are sensitive to tanβ variations


⇒


 Possibility to evaluate

the value of tanβ




� Evaluation’s procedure is particularly useful in many cases
e.g. tt production at LHC

Detailed discussion is available:
- M. Beccaria, S. Bentvelsen, M. Cobal, F.M. Renard and C. Verzegnassi,
“Special SUSY features of large invariant mass unpolarized and polarized
top-antitop production at the CERN LHC”. Phys. Rev. D71, 073003, (2005).
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� Expansion is reliable if NNLO do not depend on s
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• Convergence of this expansion
� Expansion is reliable if NNLO do not depend on s

� Rigorous check





Difficult, practically it requires a full 1 loop treatment
Done in few cases, e.g. e+e− → H+H−

So it needs a pragmatic attitude:
in a light SUSY scenario expansion is a first step which can reveal the
presence of large corrections and can be used to direct the efforts
towards a full 1 loop treatment
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Deeper inside Yukawa contributions

At L loops (purely) Yukawa contributions are of the form:

αL

(
m2

t

sin2 βM2
W

)p(
m2

b

cos2 βM2
W

)q

logr s

M2
, p+ q = L, r ≤ L.
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At L loops (purely) Yukawa contributions are of the form:
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(
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)p(
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b

cos2 βM2
W

)q

logr s

M2
, p+ q = L, r ≤ L.

• Finite and gauge invariant set of corrections
• One log for each loop
• In many processes (e+e− → ff , ud→ tb), these corrections:
� Are localized, i.e.

e+e− → tt
e+

e− t

t
Z,γ

ud→ tb tu

d b

W

� Can be computed in a gaugeless limit of MSSM:

W =
g√
2

mt

MW

1

sinβ
tR(tLH

0
u − bLH

+
u ) +

g√
2

mb

MW

1

cosβ
bR(tLH

−

d − bLH
0
d).
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Deeper inside Yukawa contributions

At L loops (purely) Yukawa contributions are of the form:

αL

(
m2

t

sin2 βM2
W

)p(
m2

b

cos2 βM2
W

)q

logr s

M2
, p+ q = L, r ≤ L.

Some questions:
• At 1 loop these terms are not negligible, what happens at higher orders?
• Is it possible to evaluate their overall contribution?
• What is the origin of these terms?

� M. Beccaria and E. Mirabella,
“Yukawa enhanced electroweak corrections at high energy in the MSSM”
Phys. Rev. D72, 055004, (2005).
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Resummation of leading Yukawa contributions

We consider leading Yukawa contributions to ψσµψAµ i.e. at L loops:
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, p+ q = L.
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• R.G. techniques can be useful to compute aforementioned form factors
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)p(
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b
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W

)q

logL s

M2
, p+ q = L.

• R.G. techniques can be useful to compute aforementioned form factors
• Due to the U.V. origin of Yukawa terms, and exploiting Supersymmetry:

ψσµψAµ ↔ V A gTA Φ

Φ

i

j

≡ Γ(V )ij





ψσµψ Aµ,

i(ϕ∂µϕ∗ − ∂µϕϕ∗)Aµ,

λ ψϕ+ h.c.
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+


 Asymptotic
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 Simplification in Callan

-Symanzik equation
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• Due to the U.V. origin of Yukawa terms, and exploiting Supersymmetry:

ψσµψAµ ↔ V A gTA Φ

Φ

i

j

≡ Γ(V )ij





ψσµψ Aµ,

i(ϕ∂µϕ∗ − ∂µϕϕ∗)Aµ,

λ ψϕ+ h.c.

 Gaugeless

limit


+


 Asymptotic

limit


 =


 Simplification in Callan

-Symanzik equation


 :

(
µ
∂

∂µ
+ βt(yt, yb)

∂

∂yt

+ βb(yt, yb)
∂

∂yb

− γij(yt, yb)

)
Γ(V )ij

(
Q

µ
, yt, yb

)
= 0.
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Resummation of leading Yukawa contributions

• At leading order in logarithmic expansion:

Γ(V )ij

(
Q

µ

)
LO
= cij

(
Q

µ

)
ΓBorn

(V )ij , (4)
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Resummation of leading Yukawa contributions

• At leading order in logarithmic expansion:

Γ(V )ij

(
Q

µ

)
LO
= cij

(
Q

µ

)
ΓBorn

(V )ij , (4)

cij =

[
αt(µ

2)

αt(Q2)

]ηt
ij
[
αb(µ

2)

αb(Q2)

]ηb
ij

, with





ηb
ij =

1

70
(6γt

ij − γb
ij),

ηt
ij =

1

70
(6γb

ij − γt
ij),
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, with





ηb
ij =

1

70
(6γt

ij − γb
ij),

ηt
ij =

1

70
(6γb

ij − γt
ij),

•


 (4) + αt, αb

evolution equations


 =


 Resummation at all orders

of leading Yukawa logarithms
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Applications and discussions

Study of relevance of Yukawa corrections in many processes:
� ILC processes: e+e− → fαfα, f = t, b

• Second order corrections are significant
• Corrections of order higher than second are negligible
• Relative differences between exact and one loop calculations are visible at ILC
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Applications and discussions

Study of relevance of Yukawa corrections in many processes:
� ILC processes: e+e− → fαfα, f = t, b

� LHC process: ud→ tLbL

In other words we have compared:
cexact − c1 loop − c2 loops

• Second order corrections are significant
• Corrections of order higher than second are negligible
• Relative differences between exact and one loop calculations are visible at ILC
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Sudakov Supersymmetric Relations

A fact:
At 1 loop and at log NLO there are some relations (SSR) between c
coefficients of Sudakov corrections of the amplitudes of different
processes involving particles of the same SUSY multiplet, e.g.

(e+e− → ff) ↔ (e+e− → f̃ f̃∗)
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A fact:
At 1 loop and at log NLO there are some relations (SSR) between c
coefficients of Sudakov corrections of the amplitudes of different
processes involving particles of the same SUSY multiplet, e.g.

(e+e− → ff) ↔ (e+e− → f̃ f̃∗)

Some questions
• What is the origin of these relations?
• What is the role played by SUSY?

� M. Beccaria and E. Mirabella,
“Supersymmetric structure of electroweak Sudakov corrections”.
Phys. Rev. D 71, 115016,(2005).
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Study of SSR: strategy

Hints for a SUSY origin of SSR

• (If SUSY exact) ⇒ (W.I. ensure that SSR are valid at all orders)

• At 1 loop and at log NLO: ∃ GBHC rules,
rules granted if SUSY is not broken

• Many soft terms are negligible at high energy

So SUSY origin of SSR is demonstrated if:

Γ1loop
U = cUβ × ΓBorn

VΦΦ
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Hints for a SUSY origin of SSR

• (If SUSY exact) ⇒ (W.I. ensure that SSR are valid at all orders)

• At 1 loop and at log NLO: ∃ GBHC rules,
rules granted if SUSY is not broken

• Many soft terms are negligible at high energy

So SSR may have a SUSY origin

One can demonstrate it neglecting MSSM’s soft terms
and computing in the asymptotic limit

the various 1 loop corrections

So SUSY origin of SSR is demonstrated if:

Γ1loop
U = cUβ × ΓBorn

VΦΦ
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Study of SSR: strategy

e+α e
−

α → fβfβ , e+α e
−

α → f̃β f̃
∗

β ,

So SUSY origin of SSR is demonstrated if:

Γ1loop
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VΦΦ
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⇓

U = cUβ × ; U = cUβ ×
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Study of SSR: results

Coming back at the general case if we show:

Γ1loop
something = csomething × ΓBorn (♠)

then SUSY origin of SSR is demonstrated.
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• Various one loop supergraphs have been computed using Superfield
Perturbation Theory.
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Coming back at the general case if we show:

Γ1loop
something = csomething × ΓBorn (♠)

then SUSY origin of SSR is demonstrated.

• Various one loop supergraphs have been computed using Superfield
Perturbation Theory.

• Convenient





Diagrams with precise physical origin
Independence from renormalization scheme
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then SUSY origin of SSR is demonstrated.

• By explicit calculations we have obtained these results:
� Validation of (♠) for each c-coefficient
� Prediction of new SSR

e.g. in the previous example:
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i(ϕ∂µϕ∗ − ∂µϕϕ∗)Aµ,

λ ψϕ+ h.c.
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 New SSR involving

gaugino form factor
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• By explicit calculations we have obtained these results:
� Validation of (♠) for each c-coefficient
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ψσµψ Aµ,

i(ϕ∂µϕ∗ − ∂µϕϕ∗)Aµ,

λ ψϕ+ h.c.


⇒


 New SSR involving

gaugino form factor




These SSR have been confirmed by a calculation in components.
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Conclusions and Perspectives

• Original results of my research activity:
� Resummation of leading Yukawa logarithms at all orders in
perturbative expansion for many important processes.
� Demonstration, in a manifest SUSY way, of Sudakov
Supersymmetric Relations.
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• Original results of my research activity:
� Resummation of leading Yukawa logarithms at all orders in
perturbative expansion for many important processes.
� Demonstration, in a manifest SUSY way, of Sudakov
Supersymmetric Relations.

• “Immediate” estensions:
� Estension of aforementioned procedures to other processes,
e.g. single top production: qb→ tq′, bg → tW−

• Possible estensions in a “wider” perspective:
� Exploitation of Sudakov expansions as an analitical information
useful in a full 1 loop calculation
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