Search for 2nd generation Leptoquarks with ATLAS at the LHC

IMPRS Elementary Particle Physics Seminar 9.6.2006

Gernot Krobath Ludwig-Maximilians-Universität München E-Mail: gernot.krobath@physik.uni-muenchen.de

Gernot Krobath

Overview

- LHC/ATLAS
- Leptoquarks
- Signal and main background
- Selection variables
- Higher m_{LQ}
- Other backgrounds
- Summary and Outlook

Gernot Krobath

Large Hadron Collider (LHC)

- startup summer 2007
- accelerator for pp
- $\sqrt{s} = 14 \text{ TeV}$
- 27 km circumference
- design luminosity: 10³⁴ cm⁻² s⁻¹
- one bunch crossing every 25 ns
- at design luminosity
 ≈ 22 pp collisions per bunch crossing expected

The ATLAS Detector

- 1 of 2 universal detectors at the LHC

- toroidal magnetic field in the muon detectors, solenoid magnetic field in the inner detector

- very good muon measurement by combining the inner and the muon detector

Leptoquarks

- What are Leptoquarks ?
 - Leptoquarks (LQ) are hypothetical particles, which carry both lepton- and baryon-numbers.
 LQ interactions conserve the lepton- and baryonnumbers separately.
 - LQ have not been observed yet, but many extensions of the Standard Model predict them:
 - Grand Unifying Theories (GUTs)
 - Supersymmetry with R-parity violation
 - $_{-}$ superstring-inspired E₆ models
 - technicolor models
 - etc.

Gernot Krobath

How are LQ produced ?

 only pair production considered here, because single production depends on the unknown q-l-LQ coupling

- all shown processes do not depend on the (unknown) q-ℓ-LQ coupling → crosssection only depends on mass of LQ and QCD.
- 2nd Generation: LQ \rightarrow q + (µ or v_{μ})
- excluded mass limit for 2^{nd} generation LQ: ~250 GeV (β =1) β = BR(LQ₂ \rightarrow q + µ)

LQ properties

- LQ couple only on one generation of quarks and on one generation of leptons of the standard model, because neither flavor changing neutral currents nor lepton number violations have been observed.
- It is assumed that LQ interactions are chiral, otherwise LQ would mediate rare decays.
- With the assumptions above there are 14 kinds (mBRW model) of LQ, that differ by:
 - spin (scalar or vector)
 - fermion number F = 3 B + L
 - isospin
 - chirality of the coupling
- LQ carry non-integer charges (\pm 5/3e, \pm 4/3e, \pm 2/3e, \pm 1/3e)
- $LQ \rightarrow \ell^{\pm} q \text{ or } LQ \rightarrow v q$

Signal and Standard Model background

• signal (β=1):

m(LQ) in GeV	$\sigma(NLO)$ (in pb)
400	2.24000
600	0.22500
800	0.03780
1000	0.00836
1200	0.00221
1400	0.00066
1600	0.00021

• background:

process	$\sigma x BR (in pb)$
$Z / \gamma^{*}(\mu\mu) + jets p_{T}^{jet}$	>20GeV 690
tt (µvj µvj)	5.5
ZZ (µµ jj)	0.6
ZW (µµ jj)	0.6
WW (µv µv)	1.7

expected $\int L dt$ of the LHC: 1st month: 1 year at design L: 9.6.2006 expected number of events: 20 pb⁻¹ $20 pb^{-1}$ $20 pb^{-1}$ $20 pb^{-1}$ $2 /\gamma^* + jets: 13.8k LQ_{400}: 44.8 LQ_{1200}: 0.04$ $Z /\gamma^* + jets: 6.9M LQ_{400}: 22.4k LQ_{1200}: 22.1$ B/16

Monte Carlo samples

- For the generation of the MC-samples PYTHIA (LQ) and SHERPA (Z+jets) respectively have been used.
- The LQ and $Z/\gamma^*(\rightarrow \mu\mu)$ + jets samples were produced with a full simulation of the ATLAS detector (ATHENA version 10.0.4)
- As signal-sample 1000 LQ-pair events with a mass of 400, 800 and 1200 GeV respectively were available
- As background-sample 80.000 $Z/\gamma^{*}(\rightarrow \mu + \mu)$ +jets events were available

Selection Variables I

signal: m_{LQ} = 400 GeV sample: 1000 LQ pairs background: 50740 Z/ γ^* ($\rightarrow \mu + \mu$) + jets events with at least 2 jets each with $E_{\tau}^{\text{jet}} > 20 \text{GeV}$

LMU München

10/16

9.6.2006

Selection variables II

after: $p_{\tau}^{\mu} > 60 \text{ GeV}$ (both muons)

 E_{τ}^{jet} > 25 GeV (both jets)

2µ opposite charge

no μ / jet isolation R = 0.4, R = $\sqrt{(\Delta \eta^2 + \Delta \Phi^2)}$

cuts for higher m_{LQ}

for higher m_{LQ} : smaller cross-section, but cuts, especially S_{T} -cut, can be increased \rightarrow background is more suppressed

main background processes

			# of events		
			left per sel.	# of events left	# of events left
		∫ L dt (pb ⁻¹⁾ of	LQ m =	per sel. LQ	per sel. LQ
		available	400GeV S_{T} >	m = 800GeV	m = 1200GeV
process	$\sigma * Br(pb)$	sample (v10)	500GeV	S _T > 1000GeV	S _T > 1200GeV
				_	
tt→µvjµvj	5.5	200	0.14		0
					0.150
ZZ→µµjj	0.6	6 7666	6 0.003	0.014	(m±200) 0
				0.046	0.918
WW→µvµv	1.7	7 2500	0.023	3 (m±200)0.023	(m±200) 0
ZW→µµjj	0.6	6 0)		
				3.217	15.848
$Z/\gamma^* \rightarrow \mu\mu$ +jets	690	73.5	5 0.143	3 (m±200) 0	(m±200) 0
		LQ e	ff.: 38.5%	, 45.4%	43.0%
				(m±200) 36,4%	(m±200) 27.6%
6 2006			12/16		Gernot Krobath
0.2000					

cut-flow table

	LQ	LQ	LQ	
cuts	m=400 GeV	m=800 GeV	m=1200 GeV	Z/γ*(μμ)+jets
without cuts	1000 =100%	1000 =100%	1000 =100%	84150 = 100%
+ both jets E_{T}				
> 25 GeV	968	987	985	65279
+OS muons				
both p ₇ >60 GeV	674	733	750	449
+ µ/jet exclusion				
ΔR = 0.4	496	495	695	390
+ dimuon mass>				
200 GeV	395	469	401	36
	> 500 GeV:	> 1000 Gev:	>1200 GeV:	>500 GeV:
+ S_{T} -cut	386 = 38,6%	456 = 45,6%	394 = 39,4%	10 = 0,12%

Summary

- LQ with $m_{LQ} = 400$ GeV can be discovered already in the beginning of the LHC run; higher m_{LQ} can be discovered with harder cuts
- most backgrounds suppressed quite well; with m_{LQ} ± 200 cut all (available) backgrounds suppressed quite well
- BUT very low statistics

Gernot Krobath

Outlook

- study ZW→µµjj background as soon as it is available
- use background samples of version 11.x.x and compare results with that of version 10.0.4
- production of LQ with version 11.0.41 underway

Jet Algorithms I

- There are 3 different kind of algorithms in ATHENA/ATLAS (taken from the Tevatron):
 - Cone 0.7: standard cone-algorithm with radius $R = \sqrt{(\Delta \eta^2 + \Delta \Phi^2)} = 0.7$

- Cone 0.4: standard cone-algorithm with radius R = 0.4
- k_{T} : separate jets according to their relative transverse momentum

Jet algorithms II

Jet algorithms III

with the cuts: $p_T^{\mu} > 60 \text{ GeV}$ (both muons) $E_T^{\text{jet}} > 25 \text{ GeV}$ (both jets) 2μ opposite charge μ / jet isolation R = 0.4, R = $\sqrt{(\Delta \eta^2 + \Delta \Phi^2)}$ $\eta_{muon} < 2.5 \text{ and } \eta_{\text{jet}} < 5$:

	no S _τ ,	S _T > 500 GeV	dimuon>200Ge S _T >	1000 GeV
	dimuon cut	dimuon>200GeV	Vdimu	ion>200GeV
cone 0.4	322	9	4	1
cone 0.7	349	9	4	1
k _τ	390	10	3	0