Matrix Homogeneity Measurements

Simone Esch¹, University Bonn

DEPFET Collaboration Meeting, Prague, 26.01.2010

¹esch@physik.uni-bonn.de

Idea

To measure gain for each Pixel we used a γ - Source: ²⁴¹Am (\sim 60 keV γ)

- 2 methods for gain calculation
 - Peak position of seed-histograms for every pixel ⇒ proportional to gain of pixel
 - Peak position of cluster-histograms for every pixel ⇒ related to gain of more than one pixel, weighted with cluster shape

Method

- Create two sets of puls-height-histogramm for every pixel (\sim 16,000 Pixel)
- If a pixel was the seed of a hit:
 - ⇒ seed-histogram is filled with the seed-signal
 - ⇒ cluster-histogram is filled with the corresponding
 5x5-cluster-signal to the seed
- Fit restricted area of histograms with a gauss-function to find peak position

Seed-Map

- Mean-values of fits are filled in a 2D histogram, representing the whole matrix
- Colourscale: Normalisation to average-seed
- Hybrid H3.0.11 COCG L B (32μm × 24μm)
- ullet differences in the order of $\pm 10\%$
- Apply this correction-map for pixel in monitor-software to correct data

Correction with Seed-Map in Monitor-Software

processed with seed gain-correction

Seed-Map

Here the same 2D histograms for seeds:

processed with gain-correction Signal of Seed-Pixel vs. Position of Seed-Pixel (SN:1057 - RN:0) 200 1.05 150 100 0.95 50 60

Pixel

Cluster-Map

processed with seed gain-correction

Problems

Just fitting the noise in some pixels

example for corrections with no

Correction with Cluster-Map in Monitor-Software

Correction with Cluster-Map in Monitor-Software

processed with cluster-map

Summary

- As part of work for Matrix characterization we developed tools to measure pixel gain dispersion.
- ullet Gain-distribution before up to $\pm 10\%$
- tested 2 methods of gain calculation and correction:
 - using seed signal distribution for pixel
 - using cluster signal distribution for Seed-pixel
- Method with seeds distributions require huge statistics, and shows a problems with low statistics.
- Method with cluster distribution shows better results

Dankeschön

Thank you for your attention