PXD DAQ Overview

Jens Sören Lange Justus-Liebig-Universität Giessen Belle II PXD DEPFET Workshop Charles University, Prague, Czech Republic January 26-27, 2010

Numbers and Protocols for the DAQ part of the TDR

Trigger

DAQ

Status of Compute Node

Content

- Trigger
 - Hardware trigger
 - Filter Algorithms for FPGA
 - Protocol (for TDR)
- DAQ
 - Event building
 - SVD parasitic readout for PXD
- Status of Compute Node
 - Performance tests of new board
 - News from IPMI

Trigger DAQ <u>Status of Compu</u>te Node

Glossary

- CN = compute node
- GB, MB, kB = gigabytes, megabytes, kilobytes
- Gb, Mb, kb = gigabits, megabits, kilobits

Trigger DAQ Status of Compute Node

PXD Backend Readout: ATCA System

"IHEP/Gießen Box"

ATCA based Compute Nodes

Trigger IHEP Group, Gießen Group DAO

Status of Compute Node

Compute Node PCB

updated Jan 2010

Bandwidth and Event Size Comparison

Sören Lange PXD DAQ Overview, 26.01.2010

DAO

Status of Compute Node

PXD Trigger

- There are 3 triggers
 - 1. Hardware trigger by Belle II Global Decision Logic reduction factor $f_1 \simeq 10$ (i.e. only every ~10th frame is sent to readout) must arrive within 2-3 us requires a complete PXD trigger system and timing synchronisation
 - 2. Track finder algorithm on FPGA in ATCA system using only PXD and SVD (2+4 hits) reduction factor f_2
 - 3. Track finder algorithm on L3 farm ("HLT") sent to ATCA system, distributed to each FPGA track extrapolation to PXD hits > reduction factor f₃ > FPGAs must buffer and wait for ~5 seconds HLT might be GPU based, see slides by Katayama-san
- Product reduction factor f₂ x f₃ must be order of 10 (or more) why?

Which reduction factors must be achieved?

- Possible bottleneck is output of ATCA system to EVB farm by GB Ethernet
 - at 1% occupancy, f₁=10, f₂ x f₃=10 raw data is 12 GB/s output data to event builder is 1.2 GB/s
 - distributed on 40 Gb ethernet links \simeq 30 MB/s per 1 Gb ethernet link
 - acceptable, but
 - CPU maybe busy by interrupt handling
 - PXD data might saturate EVB farm
 - safety margin up to occupancy 2% (60 MB/s) needed
 - achieved \simeq 25 MB/s on PowerPC (on FPGA) theoretical limit is 125 MB/s
- we have to achieve reduction factors higher than 10

What is the goal of the Filter Algorithm?

Sören Lange PXD DAQ Overview, 26.01.2010

What does the FPGA filter algorithm need to do?

2 primary tasks:

- delete events

 (e.g. QED background)
- 2. clean up events

i.e. discard part of the event(e.g. discard PXD hits inside physics eventse.g. from synchrotron photons)

Filter Algorithms: Track Finder

- to be programmed in VHDL for FPGA
- so far 2 approaches
 - Algorithm #1:

2-dim track search in φ sectors
Hough transform in rφ real space
2 different transforms for low and high momentum
Algorithm #2:

3-dim helix tracking with look-up tables (adjusted to 1 MB only free blockRAM on FPGA) conformal map (circle \rightarrow straight line) 2 x Hough transform

(r ϕ in conformal space, z in real space)

see slides by Andreas Moll

Sören Lange PXD DAQ Overview, 26.01.2010

DAO

Status of Compute Node

Trigger Protocol for TDR, Filter Algorithm YES/NO Decision

- PXD system will **not** deliver a trigger (back) to the DAQ system PXD sýstem will just delete data.
- for deleted PXD events, it might happen, that all the other detectors have a valid event > what to do with offline events w/o PXD data? > write a downscaled fraction of these to tape
- if hardware trigger issues NO > data will never reach the optical links (overwritten in DHP buffer)
- If FPGA algorithm issues a NO, there are 2 possible protocol schemes

 a.) send nothing > EVB waits and runs into a TIMEOUT

 - b.) send empty frames > generates overhead assume in worst case 1 empty GB frame 9.6 kB x 30 kHz x 90% (factor 10) = 2.6 MB/s > we prefer solution B
- for cleaned events, we have to mark, which part of the events is cleaned proposal: a bitmask e.g. 40 bytes = 125 pixels in z direction

Trigger

DAO

Status of Compute Node

Hardware Trigger

- We need f₁=10 by a GDL signal within 2-3 us, otherwise optical links are overloaded
- Consequences:
 - trigger system required (distribute GDL output)
 - timing synchronisation required of RF/5 (DHP clock) with RF/16 (beam REVO signal, reference for Belle II) RF = 508,89 MHz
 - latch required in the 70's: all trigger cables have same length today: latching trigger signal until SYNC signal arrives these are probably 3 more hardware projects (PCBs)
 - issue for MC simulations:

several GDL inputs have p_T cut (e.g. 300 MeV).

Trigger

Status of Compute Node

Trigger Protocol for TDR, Hardware Trigger

DAO

- Rest of Belle II DAQ is pipelined
- PXD pipelining?
 - what happens, if another trigger arrives, while DHP readout is in progress
 > does PXD generate BUSY signal?
 - what happens, if a trigger arrives for an event, which is <u>not</u> the first in the DHP buffer? DHP has 10 MB buffer, ≈ 25 events
 > we need to flush the pipe
 - > we need to flush the pipe
 > generates data overhead (untriggered events in stream)

DAQ

Sören Lange PXD DAQ Overview, 26.01.2010

DAO

Status of Compute Node

What is PXD DAQ?

- 1. Receive PXD data
- 2. Receive SVD data
- 3. Event building
- 4. Filter algorithm on FPGA (track finding with PXD+SVD)
- 5. Sending PXD subevent data to EVB farm (if filter algorithm issues no, then data are not sent)

DAO

Status of Compute Node

Event Building

- For PXD only:
 - 30 kHz, i.e. 30,000 trigger numbers in 1 sec
 - events are fragmented in 40 pieces on 40 FPGAs
 - assumption: buffer for 5 seconds

 (2 GB memory, 3 kHz event rate <u>after</u> hardware trigger,
 0.4 MB event size)
 - There are 3,000 x 5 x 40 data fragments in the memory at the same time which need to be sorted (heapsort, quicksort, ...) and combined to real events

= 0.6 Million fragments

- large combinatorics (0.6 Mill. X 0.6 Mill.)^{40 1}
- requires synchronisation between data fragments

Trigger DAQ Status of Compute Node

Event Building: ATCA Full Mesh Backplane

point-to-point connections

Event Building: Compute Node Architecture

Trigger DAO

Status of Compute Node

RocketIO Topology [4 x 4] <> 1 switching FPGA <> 13 (backplane)

Sören Lange PXD DAQ Overview, 26.01.2010

HOW TO SYNCHRONIZE DATA FRAGMENTS?

- There are 3 ways
 - a.) 8-bit event number (also in SVD data)
 - b.) 64-bit time stamp (Nakao-san, 19.11.2009)
 - c.) PXD counter synchronized with the grand system clock (beam clock 508.89 MHz, divided by 5 on DHH), written into the data on frontend (Hans Krüger, DAQ MiniWorkshop Giessen 07.08.2009)
- TDR
 - for PXD subevent building, we use the PXD counter to identify event fractions, which belong to each other
 - For PXD+SVD subevent building, we use a lookup table [PXD counter :: event number], synchronize by event number, and write the event number into the data this lookup table needs to be synchronized
 - 64-bit timestamp will <u>not</u> be in the PXD events (unless DAQ group requires it for the global event building)

SVD parasitic readout by PXD system

- Filter algorithm needs PXD and SVD raw data
- HOW MUCH SVD DATA?
- Prior estimate: (see Ringberg talk, S.L.)
 SVD raw data = 3 kByte x 30 kHz = 90 MB/s
 = 1 optical link

New estimate: for testing full raw data processing must be assumed 80 optical links (80 FADCs x 24 APVs) each optical link 45 MB/s (~1/6 of PXD raw data) this means: 2nd ATCA crate required

SVD parasitic readout by PXD system, cont'd

- Requires 2nd event building in 2nd ATCA
- Challenge: How to match
 0.6 Mill. PXD data fragments in one ATCA crate with
 0.6 Mill. SVD data fragments in a 2nd ATCA
 based upon a 8-bit event nr.?
 We need experience from the HADES system.
- Reminder: SVD events are discarded after the filter algorithm (not sent to EVB)
- Side remark: SVD processing takes some time pedestal subtraction, 2-pass common mode correction, hit finding, hit-time reconstruction ~ 50 us

Sören Lange PXD DAQ Overview, 26.01.2010

Trigger

DAQ Status of Compute Node

Compute Node PCB

Trigger DAQ

Status of Compute Node

Hardware modification

Compute Node Version #1, 2008

Compute Node Version #2, 2009

Sören Lange PXD DAQ Overview, 26.01.2010

IHEP Group, Gießen Group

Performance test results with new board

Status of Compute Node

Trigger

DAO

Test #1data flow, optical link \rightarrow DDR2 SDRAMTest #2P2P transmission on backplaneTest #3Gb ethernet network performance

Trigger DAQ Status of Compute Node IHEP Group, Gießen Group

Example system for data flow test

TRB = HADES Trigger and Readout Board (128 channels, CERN HPTDC chip)

Sören Lange PXD DAQ Overview, 26.01.2010

Results: data flow test for 1 readout channel

- optical link \rightarrow DDR2 RAM \rightarrow Gb ethernet \rightarrow PC
 - Generate pseudo-random data on transmitter
 - Receive data from transmitter with optical link
 - Write data into DDR2 RAM
 - Read data from DDR2 RAM and send to PC
 - Check data with software program on PC
 - ~150 hours, ~25 MB/min, 0 error
 - speed limited by the checking program (chipscope and/or logic analyzer)
 - No data package lost at full transmission speed (~1.6 Gb/s) of optical link

PXD DAQ Overview, 26.01.2010

Test #2: P2P Transmission on ATCA Backplane

- 2 CN boards in 1 ATCA shelf, slot #1 and slot #14 i.e. the longest line in full mesh backplane
- eye-diagram: small jitter and small overshoots

Status of Compute Node

Sören Lange

Trigger DAO

Test #3: GB Ethernet Network Performance

Status of Compute Node

- TCP/IP protocol
- Linux (Kernel 2.6) or Vxworks 5.5 on PowerPC405 (as hardcore on Virtex-4 FPGA)

Trigger DAO

Linux on PowerPC405 on FPGA

Status of Compute Node

Linux/PowerPC load: root=/dev/nfs ip=192.168.0.4:192.168.0.3:192.168.0.3:255.255.255.0 rw nfsroot=192.168.0. home/mingliu/m1403_rootfs console=ttyUL0,9600 mem=64M mtdparts=physmap-flash.0:6M(kernel),42M(others),-(bits am) Finalizing device tree... flat tree at 0x40ae18 Using Xilinx Virtex machine description Linux version 2.6.27-rc9 (mingliu@cca03) (gcc version 3.4.1) #15 PREEMPT Thu Nov 27 11:57:06 CET 2008 Zone PFN ranges: 0x00000000 -> 0x00004000 DMA. 0x00004000 -> 0x00004000 Normal HighMem 0x00004000 -> 0x00004000 ML300 powerpc linux 2.4.21-pre7 E.I.S. edition 192.168.0.4 login: root Welcome to the ML300, EIS edition Be careful. it's blue. # cd /home

DAO

Network Performance – Linux

Status of Compute Node

PowerPC405->PC

./netperf -I 10 -H 192.168.0.1 -c -C -t TCP STREAM -- -m 65536 -s 253952 -S 253952 TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF INET to 192.168.0.1 (192.168.0.1) port 0 AF INET Recv Send Send Utilization Service Demand Socket Recv Send Socket Message Elapsed Send Recv Size Size Size Throughput local Time remote local remote 10^6bits/s us/KB bytes bytes bvtes % U % T us/KB secs. 253952 217088 65536 212.37 -1.00 5.01 1.932 10.01 0.000 PC->PowerPC405 \$./netperf -I 10 -H 192.168.0.4 -c -C -t TCP STREAM -- -m 65536 -s 253952 -S 253952 TCP STREAM TEST to 192,168.0.4 Utilization Service Demand Recv Send Send Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Time Throughput local remote local remote 10^6bits/s % T % U us/KB bytes bytes bytes us/KB secs. 217088 253952 65536 10.01 241.42 1.57 -1.00 0.532 -0.339

Trigger DAO

Status of Compute Node

Vxworks 5.5 on PowerPC405 on FPGA

ComputeNode vxworks start:

Executing program starting at addrerTarget Name: vxTarget lltemac: warning - MII clock is defaulted to 1000 Mbps lltemac: Buffer information: 0x00018810 bytes allocated for all buffers 1564 byte cluster size 60 Rx buffers, 1st buffer located at 0x07E396C0 4 Tx buffers, 1st buffer located at 0x07E50640 0x00001008 bytes allocated for all BDs 32 RxBDs, BD space begins at 0x07E36900 32 TxBDs, BD space begins at 0x07E37100 Attached TCP/IP interface to 11temac unit 0 Attaching network interface 100... done.

NETWORK PERFORMANCE TEST SUITE Created on May 9 2009

PPC405 core : 300 MHz Stack : VxWorks

Initializing... Frame buffers at : heap space Frame buffer bytes : 0x00600000 Descriptors at : 0x07FE0000 Descriptor bytes : 0x00020000 Trigger

DAQ

Status of Compute Node

Network Performance – Vxworks 5.5

PowerPC405->PC

Main Menut 1 - Set New Transport Characteristics 2 - Show Transport Characteristics 3 - Set Link Speed (1000 FD) 4 - Set Netperf task priority 5 - Tx UDP Stream 6 - Tx TCP Stream 7 - Tx Canned UDP & TCP menu 8 - Rx Start Netperf Server (stopped) 9 - Util menu 100- Exit Enter selection: 6 Size in bytes of local socket buf [253952]: Size in bytes of remote socket buf [253952]: Size in bytes of message [65536]: Number of seconds to run test [5]: 300 TCP STREAM TEST to 192.168.0.4 Recv Send Send Utilization Service Demand Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Throughput local remote local remote Time 10^6bits/s % U % Π us/KB us/KB bytes bytes bytes secs. 253952 253952 65536 300.00 210.19 100.00 0.000 -1.000 -1.00

Main Menu:

- 1 Set New Transport Characteristics
- 2 Show Transport Characteristics
- 3 Set Link Speed (1000 FD)
- 4 Set Netperf task priority

DAO

Implications of the Test Result

Status of Compute Node

- 200 Mb/s = 25 MB/s
- Reminder: at 1% occupancy, f₁=10, f₂ x f₃=10 requirement is 30 MB/s
- but this test result is PowerPC, limited by speed of CPU (300 MHz) and interrupt handler (for each 9.6 kB packet)

Plan:

send data by FPGA instead of PowerPC expected to be faster results from XILINX indicate \geq 100 MB/s requires implementation of TCP/IP stack (project for \geq 1 year) Trigger DAQ

J. Lang, T. Gäßler (Gießen)

Status of Compute Node

ATCA Management: IPMI Controller Add-On Board

Intelligent Platform Management Interface

Problem with UART solved 2nd PCB soldered 2 weeks ago under testing

A Planned Full System Prototype for HADES

Trigger DAO

- 1 full ATCA system with 12 CN
- 20 kHz L1 rate
- 377 MB/s in spill
- 60k detector channels
- 73 optical links, 1.6 Gb/s
- TRB HADES Trigger and Readout Board IEEE Trans. Nucl. Sci. 55(2008)59
- Algorithms:
 - event building
 - event decoding
 - drift chamber track finder
 - RICH ring finder
 - matching with TOF and SHOWER

No funding

Status of Compute Node

What is needed in addition to the HADES system?

Trigger

DAO

- Proposed HADES and PXD systems are identical
- Exception:
 2 hardware modifications of the Compute Node, <u>only</u> required by PXD DAQ
- 4 GB memory per FPGA more buffer for waiting for tracks from L3 farm > impossible requires a complete new compute node PCB
- optical links 6.5 Gb/s note: SFP+ transceiver has 8 Gb/s, but limit is RocketIO with 6.5 Gb/s

TODO, large scale projects (\geq 1 year)

Trigger

DAO

- Hardware
 - Trigger distribution system
 - Timing synchronization system
 - DHH (Göttingen)
 - 2nd ATCA system for SVD readout
- Firmware (VHDL):
 - Event building PXD
 - Event building SVD (input for filter algorithm)
 - Synchronisation PXD-SVD

Trigger DAO

Status of Compute Node

Summary

- There is a substantial amount of work.
- There are several non-covered subprojects of considerable size (e.g. hardware trigger).
- We have to define interfaces to SVD.
- There are groups interested in support IHEP and some other groups.
- General timescale is shifted by 3 years: PXD DAQ construction phase 2012-2014 (if any support) PXD DAQ debugging and testing 2014-2015 (if any support)