HLT with GPU

N. Katayama, S. Lange
Trigger/DAQ Workshop
Jan. 26, 2010

Outline

e GPU
* Belle Il HLT
* Coding examples

GPU is hot

GPGPU (general purpose
graphics processing unit) is
becoming popular

— In 2008, | was looking at Cell
CPUs (used in play station 3) and
earlier GPUs

— Nvidia announced a new
architecture called Fermi early
October 2009. The products
using it will come out soon
(Q2/3, 2010)

* 520-630 double precision Gflops/

GPU(peak) as opposed to 78 Gflops
for the current generation

e These numbers do not include
transfer time between memories
of CPU and GPU

» . %
\mﬁm“
iy
\

C1060

h

GPU promises 1/10 of cost and
1/20 of power consumption

CPU and GPU

Processor Intel Core 2 Extreme NVIDIA TESLA
QX9650 C2070

Transistors 820 million 1.4 billion
Processor clock 3 GHz 1.3 GHz?
Cores 4 512

Cache / Shared 6 MBx 2 16-48 KB/768KB(L2)
Memory

Threads executed per 4 512

clock

Hardware threadsin 4 24576

flight

Memory controllers Off-die 384bit
Memory Bandwidth 12.8 GBps 64bytes/clock?

PCle x16 < 8GB/s aggregate

6/17/09 M.Al-Turany, Panda CM, Turin

Fermi GPU

The Performance Gap Widens Further <3

nvIDIA

Peak Single Precision Performance Peak Memory Bandwidth
GFlops/sec GB/sec

Tesla 20-series

I Tesla 20-series

8x double precision

Tesla 10-series ECC

L1, L2 Caches z
I Tesla 10-series

1 TF Single Precision Tesla 8-series
4GB Memory

Tesla 8-series
Nehalem
Nehalem 3 HZ
3 GHz

2003 2004 2005 2006 2007 2008 2009 2010 2003 2004 2005 2006 2007 2008 2009 2010

== NVIDIA GPU
=@= X86 CPU

>600 GFLOPS/sec (Double Precision)/chip

It’s real

Tesla Personal Supercomputer Tesla C2070 2
520-630 Gigaflop DP NVIDIA
6 GB Memory
ECC
$3,999
Tesla C2050
520-630 Gigaflop DP s~

3 GB Memory \ A Large Datasets

ECC
52,499

Tesla C1060 S
933 Gigaflop SP A ~ 8xPeak DP Performance
78 Gigaflop DP ' \

4 GB Memory

Q
(&)
c
(¢0]
=
—
(@]
G
—
(b}
(a

Mid-Range Performance

| Q3 | Q4
2010 |

Disclaimer: performance specification may change 5

Only <$1,000 now

Box with lots of GPUs

For example, this box has

— 2 CPU sockets

— 8 PCle X16 bus

— Max. 144 + 48(on GPU) GB memory

Can install up to 8 Tesla GPU boards
(5 TFLOPS with Tesla 20)

GSI group is now developing a special
card (PCle 4e) that will read the DATA
from DAQ

o /‘7 W‘V@/ /‘74.

— We can directly read PXD/SVD data ‘ = ; .4 i i i |

Only for less than $10,000/box (basic
configuration, one CPU+GPU)

Box with 4 GPUs/no CPU in 1U chassis

i ST e A

What’s new with Fermi/Cuda 3.0

Nvidia has changed the strategy a bit so that it is
even more usable (programmable)

Double precision operation is 8 times faster than
before

ECC

It uses the same address space as CPU so that we
can use objects (data part only)

More C++ support in Cuda 3.0

Some compiler (PGI for example) can produce
GPU code automatically from normal C99/Fortran
programs

Belle Il HLT

The biggest computing challenge

Belle Il HLT

* Belle HLT working well (200 CPU core or so)
— It takes 0.4 second to analyze one Hadronic event

— L1 trigger rate is “500Hz, HLT output rate is

~200Hz

— Real F

adronic events: 100Hz

e Bellell

— L1 trigger rate 20KHz

— HLT w

* Rea

HLT: much harder problem

ill reduce to 5KHz

| Hadronic events:5KHz

— Pixel detector produces 25GB/s data

* We

need to reduce down to 100MB/s or so

Belle Il High Level Trigger

PXD Other detectors

T § s
HLT

\100M B/s \SOOM B/s

Roobasf for HLT

ROOBASF for HLT

Hits reconstruction

CPU/GPU

(s

= e (s

Clustering

CPU/GPU

Tracking

G
=
G

/cPu I cPuU/GPU

CPU/GPU . CPU/GPU

CPU/GPU

Track
matching,
vertexing

CPU/GPU

Event selection
Classification

elep peli)nJlSUODaJ/MEJ

‘iox-o||o><-o IUx-o

Reconstruction
CPU + GPU

Two ways

600MB/s

)

100MB/s

—:

muop,ez!uo;q:)u/\s

500MB/s

Reconstruction

CPU + GPU =

GPU programming

* There are many ways to make use of GPUs

— Write your own code using
 CUDA (easier?)
e OpenCL (promising?)
— Using compilers that produce code running on
GPUs

* PGI (no C++)
— Use existing libraries for GPU (cublas, magma...)
* there might not be one

— Hybrid approach

e Use CUDA but use existing packages wherever possible

pyCUDA

import pycuda.autoinit

import pycuda.driver as drv

import numpy

from pycuda.compiler import SourceModule

mod = SourceModule(""" YOU can embed

__global__ void multiply_them(float *dest, float *a, float *b)

(GPU program

const int i = threadldx.x;

dest[i] = ali] * b[il; IN python.
}
")
multiply_them = mod.get_function("multiply_them") 1 i
a = numpy.random.randn(400).astype(numpy.float32) It 1S dynam|Ca”y
b = numpy.random.randn(400).astype(numpy.float32) .
dest = numpy.zeros_like(a) Comp Iled and

multiply _them(

drv.Out(dest), drv.In(a), drv.In(b), exeCUted on the ﬂy
block=(400,1,1))

print dest-a*b

pyCUDA (gpuarray)

* Can manipulate GPU memory in python

import pycuda.gpuarray as gpuarray

a gpu =
gpuarray.to gpu(numpy.random.randn(4,4) .astype (numpy.float32))

#

#computation (X 2.0)is done in GPU memory

#
a doubled = (2.0*a gpu) .get ()

 pyCUDA supports packed sparse array
(Garland and Bell, integrates with scipy.sparse)

— maybe useful for pixel data reduction

pyUblas + boost.ublas + magma

magma stands for “matrix algebra for GPU and
multicore architectures”
— It is not really for our problem of pixel data reduction

— But the library is available for single GPU and we can
compare the result with the standard implementation
of BLAS routines

In python (on CPU), one writes

c = magma.gemm(a, b)

— and the computation (matrix multiplication) is carried
out on GPU

d(s)gemm gives 60-75(200-370) GFLops/s on a
C1060

gemm code (C++)

double *d Am , *d B m , *d C m;

cublasAllocY size Al, sizeof(aouble),
cublasAlloc(size Bl, sizeof (double),
cublasAlloc(size Cl, sizeof (double),
cublasSetMatrix(M, K, sizeof(double
cublasSetMatrix(K, N, sizeof(double
cublasSetMatrix(M, N, sizeof(double
magmablas dgemm (//Order,

TransA, TransB, M, N,

alpha, d A m, lda,

d B m, 1ldb,

beta, d C m, 1ldc);
cublasGetMatrix(M, N, sizeof (double

cublasFree(d A m);
cublasFree(d B m);
cublasFree(d C m);

(void**)&d A m

(void**)&d B m

(void**) &d C m

~—

.
14

~ ~—
~ ~

lda) ;
1db) ;
ldec) ;

)
)
) 1

A,
B,
C,

lda, d A m,
ldb, d B m,
lde, d C m,

Ky Tuned cuda code is

inside magmablass_dgemm

), d Cm, 1ldc, C, ldc) ;

magmablas

| can’t show you... | have
not gotten permission
but something like:

__shared double Bb[1l6][17];
const int tx = threadIldx.x;

const int ty = threadldx.y;

int iby = ((blockIdx.y + blockIdx.x)
$ (n/16))*16;

const int idt = ty * 16 + tx;

int ibx = blockIdx.x *64+idt;

//int iby = blockIdx.y *16;

A += ibx ;

B+=tx+ mul24 (iby+ty, 1ldb);

//A += 1bx + idt;

//C += ibx +idt + mul24(iby,ldc);
//C += mul24 (ibx +idt,ldc) + iby;
C += mul24 (ibx ,1ldc) + iby;

const double *Bend = B + k;

dgemm.cpp

double Cbll6] =
{o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}7

do {

double Ab[4] = {A[Q0], A[lda],
A[2*1dal, A[3*1dal};

Bb[tx] [ty+0] = B[0*1db];

Bb[tx] [ty+4] = B[4*1db];

Bb[tx] [ty+8] = B[8*1db];

Bb[tx] [ty+12] = B[12*1db];

__syncthreads () ;

A += 4 * lda;

saxpy (Ab[O0], &Bb[0][0], Cb); Ab[O]
= A[O*1lda];

saxpy (Ab[1], &Bb[1]1[0], Cb); Ab[1l]
= A[l*1lda];

saxpy (Ab[2], &Bb[2]1[0], Cb); Ab[2]
= A[2*1da];

saxpy (Ab[3], &Bb[3]1[0], Cb); Ab[3]
= A[3*1lda];

Performance measurements

e Started to measure timings
— Copy from CPU to GPU: 5.2 GB/s
— Copy from GPU to CPU: 1.8 GB/s

 These measurements are with cublasSet/GetMatrix
which | guess is not a straight copy as it has many
arguments

— Compute speed is fine

* 60-75Gflops/s for double precision and 200-360 Gflops
for single for C1060

Many other applications in HEP

Reconstruction

— Track finding/fitting

— Cluster/pi0 finding/reconstruction
Physics analysis

Likelihood fits

Plan: Hope to investigate more

— If you want to join, please let me know

backup slides

CPU vs. GPU

CPU GPU

* CPU is designed to execute one * GPU is designed to execute many
stream of instructions as fast as parallel streams of instructions as fast
possible. as possible.

 The CPU spends transistors on * The GPU spends transistors in
hardware features like instruction processor arrays, multithreading
reorder buffers, reservation stations, hardware, shared memory, and
branch prediction hardware, and multiple memory controllers.

large on-die cache.

* The CPU uses cache to improve * The GPU uses cache (or software-

performance by reducing the latency managed shared memory) to amplify
of memory accesses. bandwidth.

CPU vs. GPU

CPU

The CPU handles memory latency by
using large caches and branch
prediction hardware. These take up a
large deal of die-space and are often
power hungry.

CPUs support one or two threads per
core.

The cost of a CPU thread switch is
hundreds of cycles.

GPU

The GPU handles latency by
supporting thousands of threads in
flight at once. If a particular thread is
waiting for a load from memory, the
GPU can switch to another thread
with no delay.

CUDA capable GPUs support up to
1,024 threads per streaming
multiprocessor.

GPUs have no cost in switching
threads. GPUs typically switch
threads every clock.

CPU vs. GPU

CPU GPU
CPUs use SIMD (single instruction, * GPUs employ SIMT (single instruction
multiple data) units for vector multiple thread) for scalar thread
processing. processing. SIMT does not require the

programmer to organize the data into
vectors, and it permits arbitrary

branching behavior for threads.

 CUDA capable GPUs employ up to
eight on-die memory controllers. As a
result, GPUs typically have 10x the
memory bandwidth of CPUs.

Intel CPUs have no on-die memory
controllers.

Working example
Tracking for Panda experiment

Track fitting: Implementation in CUDA (2.1)

Toonesara This is
twice

Candidates)

Track Fit
32-threads

slower

than CPU y
TClonesArray Ta S k '

(Tracks)

' M.Al-Turany, Panda CM, Turin

400

350

300

N
[$)]
o

Time (ms)
- N
g 8

100

50

Track fitting on CPU and GPU

[|—=—CPU
| |—*— GPU (Float(4))

+— GPU (Double(8))
L |—v— GPU (Emulation)

1000 ¢

100 |

—u—CPU

—e— GPU (Float(4))

v
A— GPU (Double(8)) /l
—v— GPU (Emulation)

.1 &
| / ; :‘/'/
e he o T B
No of Tracks / Event No of Tracks / Event
50 100 | 1000 | 2000
GPU (Emu) 60 150 180 | 370
CPU 3.0 5.0 120 220
GPU (D) 1.2 15 3.2 5.0
GPU (F) 1.0 | 1.2 1.8 3.2

What we gain?

29

1000.07 5 gpu Emulation) 70.00; 5 GPU (Doubl
B CPU g 60.00 {1 (ou E)
B GPU (Double) R B GPU (Float)
N B GPU (Float) = 50.00;
2100.0, E
E fy 40.00
& 5 30.00
= 10.0- E 2000
- |
% 10.00
1.0- 0.00-
50 100 1000 2000
50 100 1000 2000 Track/Event
Track/Event Track/Event 50 | 100 | 1000 | 2000
GPU (Double) 2.5 3.3 | 375 44.0
GPU (Float) 3.0 4.2 | 66.7 68.8
6/17/09 M.Al-Turany, Panda CM, Turin

CUDA GPU occupancy calculator

e Tesla C1060: 30 Multiprocessor
2048 Bytes shared memory per block

« In this test: 32 threads per block

Active Threads per Multiprocessor 256
Active Thread Blocks per Multiprocessor 8
Occupancy of each Multiprocessor 25%

« To Get the most of this card we should use 256 threads per block

Active Threads per Multiprocessor 1024

Active Thread Blocks per Multiprocessor 4

Occupancy of each Multiprocessor 100%

How to optimize the usage of the Tesla

card in this example?

Problem:
— Only 25% of the hardware is used!
— The limitation we have in this example is the number of points in the track

candidate (average =32 points). So starting more threads and/or less blocks

will not help!

This is for current generation GPU. Fermi could well be different. In Fermi
each Warp (32threads) can execute different instruction. (NK)

Solution:

— Tesla support concurrent access which means that different CPU threads (Or

Processes) can start different kernels on the device.

6/17/09 M.Al-Turany, Panda CM, Turin

31

Parallelization on CPU/GPU

Track
Event 1 Candidate_s{ GPU Task Tracks

Track
Candidates

Track
Event 3 Candidates GPU Task

Track
Candidates

viainu

GPU Task Tracks

Event 2

Event 4 GPU Task

6/17/09 M.Al-Turany, Panda CM, Turin 32

Results

Track/Event 50 2000 2000
Process (Float) (Float) (Double)

1 1.0 ms 3.2 ms 5.0 ms

4 1.7 ms/Process 3.3 ms /Process 6.3 ms/Process

No. of Track/Event | 50 2000 2000

Process (Float) (Float) (Double)

1 CPU 1.7 E4 Track/s 9.1 E2 Track/s 9.1 E2 Track/s
1 CPU + GPU (Tesla) 5.0 E4 Track/s 6.3 E5 Track/s 4.0 E5 Track/s
4 CPU + GPU (Tesla) 1.2 E5 Track/s 2.2 E6 Track/s 1.3 E6 Track/s

6/17/09 M.Al-Turany, Panda CM, Turin 33

