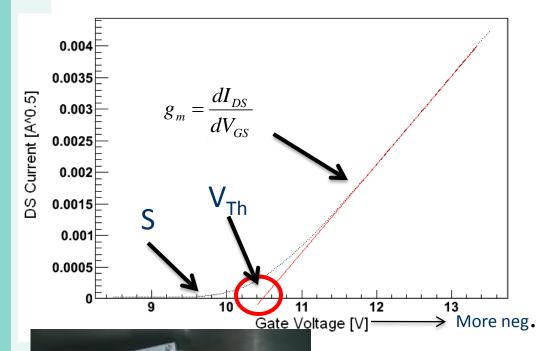

DEPFET Irradiations Status and plans

Peter Müller

Andreas Ritter

Why to irradiate?

Radiation dosage for DEPFET pixel detector in Belle II consists of:


- Synchrotron radiation
- Beam gas interaction (vacuum in the interaction region could be worse than in present KEKB)
- Intra beam scattering (Touchek Effect)
- Luminosity-related QED processes (!)

Exact Dose parameters and radiation profiles aren't available at present

- First Simulations and "Back on the envelope" calculations are scary (!)
- Impact on DEPFET:
 - Threshold voltages in gate and clear-gate

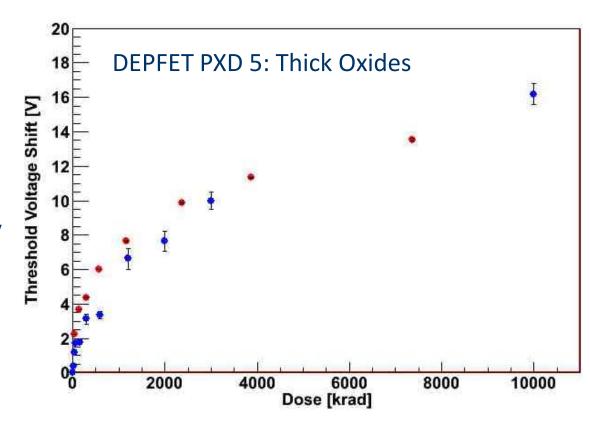
December 09: X-Ray Irradiations in Karlsruhe

Up: Typical extraction of threshold voltage from $I_{DS} - V_{GS}$ data.

Bottom: X-ray tube at the Karlsruhe Irradiation center (from [http://www-ekp.physik.uni-

karlsruhe.de/index.php?option=com_content&vi ew=article&id=93&Itemid=12&lang=de])

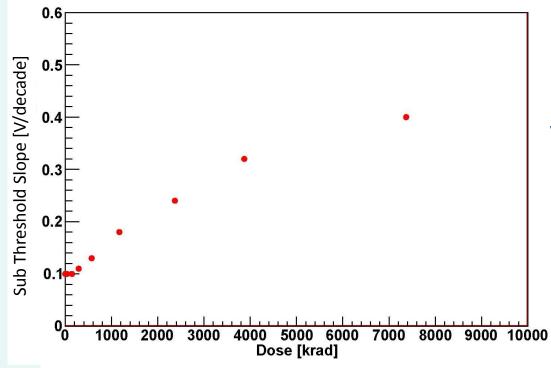
DEPFET


- 2 Devices under Test
- Irradiation scheme:
 - DUT 1: Zero Voltage at all contacts
 - DUT 2: Adaptive biasing from Off voltage (5V) to zero voltage at Gate contact (other contacts 0V)
 - Interest in input characteristics of devices
 - Threshold voltage V_{Th}
 - Transconductance g_m
 - Subthreshold Swing S
 - Mini matrices from PXD 5

DEPFET: Results of threshold voltage shift

Observation and conclusions:

- Breakdowns:
 - Short circuit current between layers Poly 1 and Poly 2 with DUT 1 prevented further measurements at higher doses (>7.5 Mrad)
 - 2nd DUT still lived after 10Mrad
- Voltage shift of about 16.5 V at 10 Mrad
- Annealing of threshold voltage shift after approx.
 500 h is around 4 V → V_{Th}
 ~12.5V
- Threshold voltage spread over several pixels is under investigation, especially of DUT2



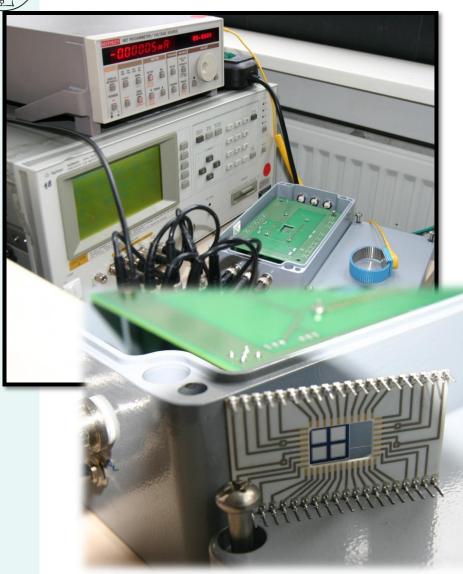
Red: DUT 1 Blue: DUT 2

Measurement done by P. Müller.

DEPFET: Sub threshold Slope

What is this Slope?

Slope S: Measured in sub threshold region, how much voltage is needed to change I_{DS} by one decade


Why evaluate this Slope?

The Slope is affected by interface traps – Information about oxide quality and radiation induced traps – Compare with MOS diodes irradiations

Increase of traps from 0 krad to 10Mrad by factor 4

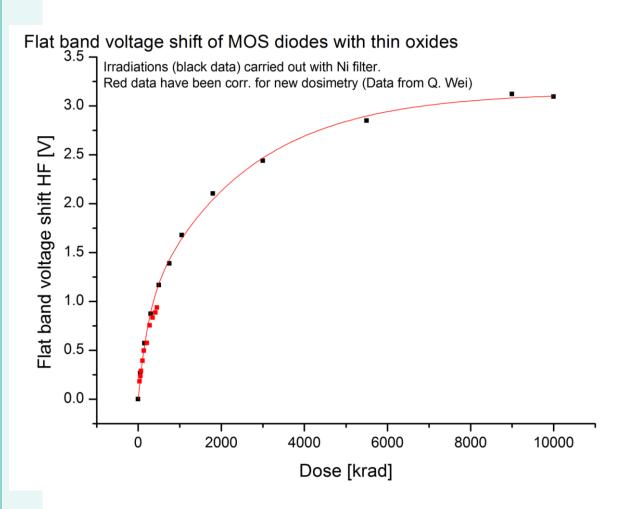
MOS Diodes with thin oxides

Irradiation of MOS diodes with thin oxides

MOS diodes consists of:

- Gate (Metal) contact
- Bulk contact

With DC bias, different charge states possible (accumulation, depletion, inversion)

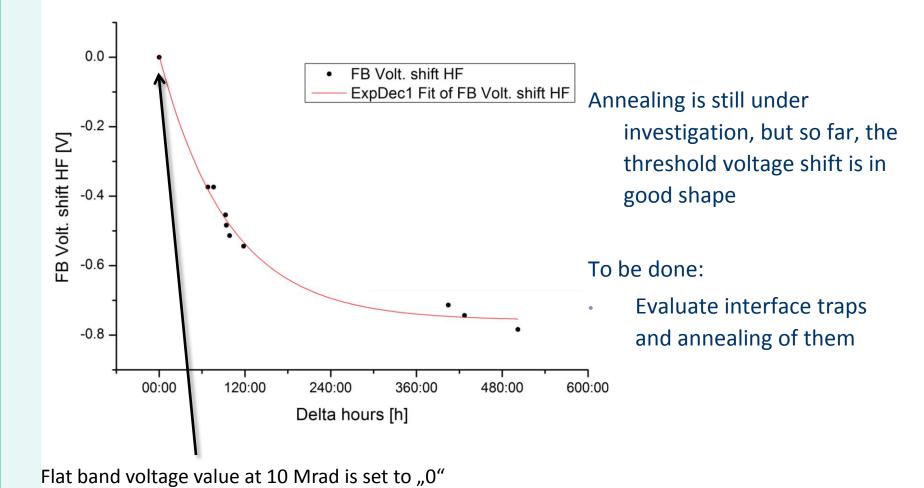

Via Capacitance – Voltage measurement with High (10 kHz) and Low Frequencies (20 Hz) one can get Information about:

- Flat band voltage
- Interface traps

Flat band voltage shift vs. Dose in MOS
Diodes is equivalent to threshold
voltage shift in MOSFETs

MOS diodes: Flat band voltage shift

Tasks:


- Irradiate MOS diode up to 10 Mrad
- Evaluate flat band voltage shift and interface traps
- Compare results with data of Q. Wei

Conclusions:

- Corrected data from Q.
 Wei corresponds well
 with new dosimetry
- Fit model seems to agree fine

MOS diodes: Annealing of flat band voltage shift

"Back on the envelope" calculation

-From Occupancy to Radiation Damage-

"Scary" Version

- Stopping power for 6 MeV electron in SiO₂: 1.65 MeV cm²/g (from NIST, http://physics.nist.gov/cgi-bin/Star/e_table.pl)
- Density of SiO₂: 2.66 g/cm³
- Pixel size: 50*50*0.13 μm³
- Deposited energy in 130 nm SiO₂:
 57eV
- Mass of oxide layer⁺: 8.65*10⁻¹³ kg
- Dose MIP= E/m= 1.05 * 10⁻⁵
 Gy/pixel
- Occupancy: **0.5%** in $10\mu s \rightarrow 100\%$ in 2ms
- Assumed duty cycle: 4 months≈10⁷ s
- Cumulated dose: $0.525 * 10^{-5}$ Gy/ms $*10^3 * 10^7$ s = 52.5 kGy/a
 - = <u>5.25Mrad/a</u>

Preliminary:

Estimated Occupancy from Belle SVD2, Layer 1 transferred to PXD Layer 1: 0.05 % → "Normal" Version

†In fact, gate oxide layer is much smaller, but anyway, the area cancels out

Electron irradiations needed – Investigate Ionizing and NIEL damage

SILICON DIOXIDE

10²

10¹

10¹

10¹

10¹

10¹

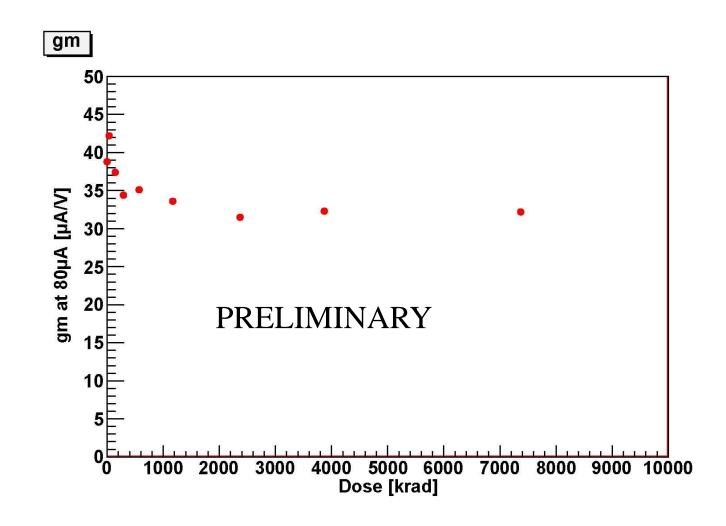
10¹

10¹

10¹

10²

10³


Enercy (MeV)

Backup Slides

Backup slides

