Background Simulations

Kolja Prothmann Martin Ritter Max-Planck-Institut für Physik

Zbynek Drasal Charles University Prague

Outline 2

- Goals & Concept
- Implementation
- Results
- Summary & Outlook

- Performance of the PXD with Background?
- Which noise level is still tolerable?
- Reduction of readout time → increased pixel size
- Elongation of the readout time → decreased pixel size

- Sources of Background
 - Physics Background (see talks Christian Kiesling)
 - Machine Background
 - Electronics noise
- Physics Background
 - Event generator (KoralW)
 - Full Geant4 simulation
 - Timed to the bunch crossing
- Electronic noise
 - Implementation in the PXD digitizer

- Integration time of the PXD with 1600 pixel ~ 20 μs
- Event generator KoralW: 5000 tracks in acceptance
- Event distribution according to bunch crossing time
 - Poisson distributed events
- Gaussian smearing in time (around bunch crossings)
- Gaussian smearing of the interaction point (IP)

- Introduction of lund7 hepevt file format
 - Can handle timestamps
- Modification to Mokka to keep timestamp
- SimTrackerHits including timestamp → Digitizers

- Modification to the digitzier
 - 100 electron noise is assumed
 - Electronic noise digits (energy depositions in the pixels) are generated
 - Digits are generated from the signal and the background physics
- Modifications to the clusterizer
 - Clusters are build from all digits
 - Seed pixel requires 5 times the noise
 - Joined pixel is requires 3 times the noise
 - → More information see talk of Zbynek Drasal

- Introducing time cuts
- PXD Digitizer
 - 20 000 ns integration time
- SVD Digitizter
 - 20 ns integration time
- CDC Digitizer
 - 200 ns integration time

with Noise no Background Baseline Layer 0 Layer 1

Belle II Background 20 µs ~5000 primary particles

Star detector central ion collision ~3000 Tracks

Projection on X/Y Plane

Projection on Y/Z Plane

Status

- Background simulation are work in progress
- Results on small datasets are available
- Merging background into reconstruction toolchain is working
 - But: still problems heading to large scale simulation

Outlook

- Next step: divide SiPxIDigi
 - Digitizer
 - Clusterizer
- Possibility to use Datareduction Processor on digit level

Backup

BelleII - PXD/DEPFET Meeting

Baseline: R1=14; R2=22; Thickness=50um; N1=N2=1600

- Study 1: (variation of inner radius)
 - R1 = 13 mm
- Study 2: (variation of sensor thickness)
 - Thickness = 75 um
- Study 3a: (variation of number of pixels and readout speed)
 - N1 = 800 pixel
- Study 3b: (variation of number of pixels and readout speed)
 - N1 = N2 = 800 pixel
- Study 4: (break the inner layer)
- Study 5: (Optimal but still conceivable PXD)
 - R1 = 13mm; N1 = N2 = 2000 pixel

