Update on Depfet Optimization Studies & Material Budget Studies

Z. Drásal

Charles University Prague

Outline

- Update on Mokka (Geant4) simulations material budget studies for Belle II experiment
- Update on SiPxIDigi (Marlin digitization) new clustering procedure implemented
- Single particle optimization studies with different noise levels set & different clustering parameters ...
 "Effective efficiency" studies
 Spatial resolution studies
 Cluster size studies

Update on Mokka (Geant4)

- Implemented an option to switch on/off material budget studies → study how much material is "seen" by a particle
- Mokka configuration & output:
 - /Mokka/init/materialStudies true (steering file configuration)
 - /gun/particle/geantino (geantinoCharged) (steering file configuration)
 - LCIO file for each event hits generated:
 - MBBPCollection \rightarrow 1 hit with beam pipe material
 - MBPXDCollection \rightarrow 1 hit with PXD material
 - MBSVDCollection \rightarrow 1 hit with SVD material
 - MBCDCCollection \rightarrow 1 hit with CDC material
- Marlin: AnalyseMatBudget processor

Material Budget Studies I

Studies for Belle II experiment – PXD baseline with 50μm thick active sensors, 1600 pixels in 1st (R14mm) & 2nd (R22mm) layer; SVD with forward slanted, but still, only active sensors 300 μm thick implemented (missing one order of SVD X/X₀, see E. Gfall's talk)

Material Budget Studies II

Studies for Belle II experiment – PXD baseline with 75μm thick active sensors, 1600 pixels in 1st (R14mm) & 2nd (R22mm) layer; SVD with forward slanted x straight (model), but still, only active sensors 300 μm thick impl. (missing one order of SVD X/X₀, see E. Gfall's talk)

Update on SiPxIDigi - New Clustering

- New clustering algorithm implemented each SimTrkHit is not "digitized" step-by-step into TrkHit as before, but ...
 - All hits are saved in memory
 - Based on S/NAdjacent cut (2 sigma) noise hits are generated (only in sensors, where signal(s) already is(are) - to save CPU time) Cluster seeds based on S/NSeed cut (5 sigma) are found + surroundings are searched → central part of new cluster defined For each cluster other adjacent pixels are found (based on S/NAdjacent cut) and added
 - R-Phi & Z projected positions calculated 2 algorithms implemented:
 - Cluster size <= $2 \rightarrow COG$ (center of gravity no etha correction)
 - Cluster size > 2 \rightarrow Analog head-tail algorithm
 - 3D position calculated, MC information + weight on each particle saved TrkHit created

Digitization & Clustering Studies: Effective "Efficiency" for 50 µm Si

Single muon particle studies performed (no background) - influence of different settings of noise level & clustering parameters studied
 Geometry: Belle II experiment - PXD baseline with 50µm thick active sensors, 1600 pixels in 1st (R14mm) & 2nd (R22mm) layer
 Geed: 4 sigma × 5 sigma; Other: 2 sigma

Digitization & Clustering Studies: Effective "Efficiency" for 75 µm Si

Single muon particle studies performed (no background) - influence of different settings of noise level & clustering parameters studied
 Geometry: Belle II experiment - PXD baseline with 75µm thick active sensors, 1600 pixels in 1st (R14mm) & 2nd (R22mm) layer
 Geed: 4 sigma × 5 sigma; Other: 2 sigma

Spatial Resolution & Cluster Size for

50 µm Si

 Single muon particle studies performed (no background) ...
 seed = 5 sigma, 50 µm Si

PXD Resolution (RMS90) in R-Φ

PXD Resolution (RMS90) in R-Φ

Spatial Resolution & Cluster Size for

75 µm Si

 Single muon particle studies performed (no background) ...
 seed = 5 sigma, 75 µm Si

PXD Resolution (RMS90) in R-Φ

Summary & Plans

- Material budget studies & Mokka
 - Plan to implement 2 full options of SVD to see impact on PXD, tracking, ...
- SiPxIDigi
 - Plan to merge digitizer ver. validated on TB with full sim. ver. (B. Schwenker) Plan to provide study on diffusion × Landau (Geant4 changes)
- Current studies
 - Summary:
 - clustering and its parameters (cuts & noise level) have visible effect on all results
 - effective efficiency degrades for 50 μ m option for noise level >= 400e, for 75 μ m Ok
 - spatial resolution degrades for higher noise level ~ by several microns (1-4 μ m)
 - spatial resolution in R-Phi increases for $75\mu m$ option by ~ 15%
 - if one goes from 50μm to 75μm, best values of spatial resolution in Z shift from
 Θ[deg] 30 50 to 45 65 (full physics studies have to decide, what's better)
 - cluster sizes for 75μ m increase at most by 15% (Θ =30deg)
 - Plan to perform all the studies in background environment too

Backup - Simulation BelleII - Mokka

Beam pipe: cylindrical, "onion-like structure"
 inner Au layer (10 μm), inner Be layer, paraffin (active cooling), outer Be layer

 PXD: 2 layers of DEPFET detectors organized in "windmill" structure ("layer" → "ladder" → "sensor + rims")

Backup - Simulation Belle II- Mokka 2

<u>forwa</u> r	ď
DSSDs	
2	
2	
3	
4	
1	
1	
1	
	forwar DSSDs 2 2 3 4 1 1 1

• CDC: Central Drift Chamber

Al cylindrical chamber - with cone-shaped inner parts

filled with a mixture of He and C_2H_6 (50%/50%)

