Pair Backgrounds at the ILC Vertex Detector

Full Detector Simulations with Mokka

Adrian Vogel DESY FLC

ILC Vertex Detector Workshop, Ringberg Castle, 2006-05-29

Background at the ILC

e⁺e⁻ pairs are a main source of background

- created through beam-beam interaction
- crash into forward calorimeters (BeamCal) and magnets of the beam delivery / extraction line
- create neutrons, photons, and charged particles

Different kinds of impact on the detector

- direct hits from primary e⁺e⁻
- indirect hits from backscattered secondaries
- radiation damage from particle fluence (esp. neutrons)

Simulation Tools

Guinea Pig (e⁺e⁻ pairs generator)

- used with TESLA beam parameters
- gives \approx 130 000 particles per BX

Mokka (full detector simulation)

- version: 06-00 with Geant 4.8.0.p01
- physics list: QGSP_BERT_HP (Geant 4 built-in) with high-precision neutron models
- geometry: "small" LDC design with new forward region (crossing angles: 2 mrad and 20 mrad with DID)
- simulated 100 BX for both geometries

ILC Beam Parameters

"Small" LDC Detector Design

- Coil and TPC have been shortened
- ECAL and LumiCal have been pulled towards the IP
- FF at L* = 4.05 m remains unchanged
- BeamCal stays where it was
- New layout of the forward region

LDC Forward Region – 2 mrad

- LumiCal (red) R_i = 80 mm
- Low-Z absorber
- BeamCal (blue) R_i = 20 mm
- Centered on the downstream axis
- No DID field

Compressed view 1:2

LDC Forward Region – 20 mrad

- LumiCal (red) R_i = 120 mm
- Low-Z absorber
- BeamCal (blue) $R_{i1} = 15 \text{ mm}$ $R_{i2} = 20 \text{ mm}$
- Centered on the downstream axis
- 20 mrad DID field

Compressed view 1:2

DID – Detector-Integrated Dipole

- Superimposed on the main solenoid field
- Introduced to prevent spin precession
- But has also a major impact on background

- Low-energy particles follow the field lines
- Tracks can be shifted in the x-direction

Compressed view 1:10

VTX Hits – z-phi-Plane

Mokka hits on VTX layer 1 (overlay of 100 BX)

VTX Hits – Time Structure

- Clear separation
 between direct hits and
 backscattered particles
- $t \approx 23 \text{ ns corresponds}$ to a distance of 7.0 m (3.5 m in each direction)
- Most backscatterers come from the BeamCal

Structures for 2 mrad and 20 mrad look similar

VTX Hits – phi Distribution

Separation of immediate hits (red) and backscatterers (blue)

VTX Hits – z Distribution

Separation of immediate hits (red) and backscatterers (blue)

VTX Hits – All Layers

VTX Transitions – EM Particles

Particles passing through the VTX layers

VTX Transitions – Charged Particles

Separation of near (red) and distant (blue) sources

VTX Transitions – Photons

Separation of near (red) and distant (blue) sources

Adrian Vogel

ILC Vertex Detector Workshop, Ringberg Castle, 2006-05-29

VTX Transitions – Neutron Fluence

Neutrons passing any VTX layer (with double counting)

- 1.7 \pm 0.3 per BX for 2 mrad
- \blacksquare 9.2 \pm 0.7 per BX for 20 mrad

Normalisation per unit area

divide by total surface of 2.8 · 10³ cm²

Normalisation per nominal run time

• $\int \mathcal{L} dt = 500 \, \text{fb}^{-1}$ corresponds to $2.3 \cdot 10^{11} \, \text{BX}$

Neutron fluence (no energy scaling applied yet)

- (1.4 \pm 0.2) \cdot 10⁸ neutrons/cm² for 2 mrad
- (7.6 \pm 0.6) \cdot 10⁸ neutrons / cm² for 20 mrad

VTX Transitions – Neutrons

Statistics for neutrons are rather low ...

Adrian Vogel ILC Verte

ILC Vertex Detector Workshop, Ringberg Castle, 2006-05-29

Comparison with Brahms (K. Büßer)

Qualitative agreement

- same generator input from Guinea Pig
- Brahms and Mokka have similar overall geometries
- backscattering is a geometrical effect

Quantitative differences

- Mokka has a new VTX model (larger sensitive area)
- Geant 4 physics lists include neutron contributions
- different cut mechanisms (energy cut vs. range cut)
- different effective cut values? (to be compared)
- different concepts of a "hit"? (to be looked into)

SIT Hits

FTD Hits – All Disks

Adrian Vogel ILC Vertex Detector Workshop, Ringberg Castle, 2006-05-29

FTD Hits – xy-Plane

Mokka hits on the innermost FTD (overlay of 100 BX)

20 mrad, DID

2 mrad

FTD Hits – phi-t-Plane

Mokka hits on the innermost FTD (overlay of 100 BX)

FTD Hits – Radius and Time

Mokka hits on the innermost FTD (overlay of 100 BX)

TPC Hits (Not Your Problem)

Mokka hits in the TPC (overlay of 100 BX)

Front view, 2 mrad

Side view, 2 mrad

Backscattering Sources

Origins of electrons (red) . . . and positrons (blue) which . . .

... go through this surface in front of the LumiCal

Backscattering is a significant contribution

- may be reduced by optimisation of geometries
- work is in progress (in collaboration with FCAL)
- small modifications (e.g. radii) can have large effects

Simulation effort is going on

- this talk contains data from 1 CPU-year
- jobs were run on the Grid (3 days on \approx 120 nodes)
- the parameter space is large and multi-dimensional

Further runs are planned

different geometries, beam parameters, ...

Summary and Outlook

Other background sources

- backscattering from losses in the extraction line
- beam halo from the main linac
- can be studied with tools like BDSim

Background signals in the VTX (and friends)

- crossing angle (plus the DID field) can cause asymmetries and hot spots
- background hits have a clear time structure
- draw your own conclusions you are the experts
- beware: background studies are no percent business!