Vertex Ladder Engineering: from the STAR experience to an ILC design

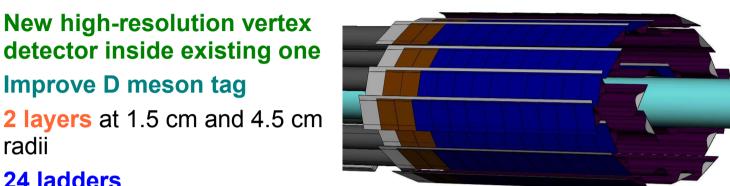
A Vertex Detector for the ILC, Workshop at Ringberg Castle Ringberg, May 28-31, 2006

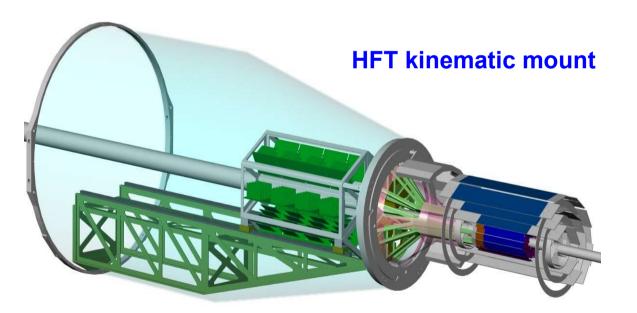
Devis Contarato

Lawrence Berkeley National Laboratory

M. Battaglia, B. Hooberman (UC Berkeley & LBNL) L. Greiner, H. Matis, H. Wieman (LBNL)

Outline


- Introduction: the STAR Heavy Flavor Tracker
- Test facilities at LBNL
- STAR HFT prototype ladder testing
- Back-thinning studies
- Outlook: towards a ladder design for the ILC



The upgrade of the STAR vertex detector

View of the STAR Heavy Flavor Tracker

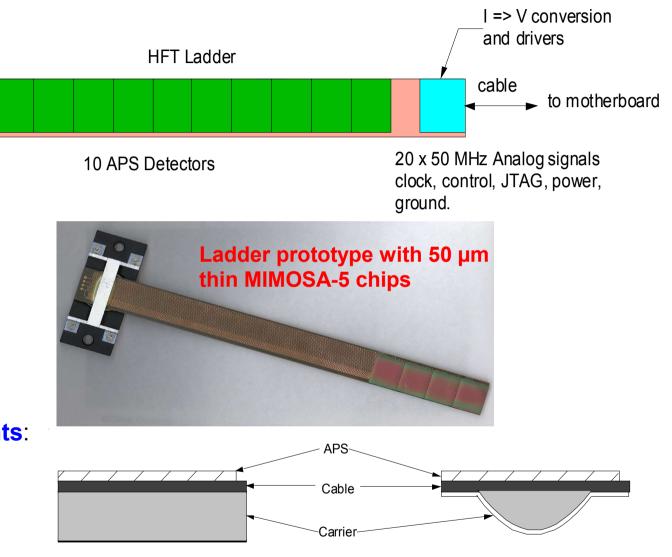
- Improve D meson tag
- 2 layers at 1.5 cm and 4.5 cm radii
- 24 ladders
 - -2 cm \times 20 cm each
 - ~100 Mpixels, 30×30 µm²
 - 4 ms readout time
 - Rad-hard to 2 kRad/yr
- **Project approved:** funding for 2 years R&D followed by construction
- LBNL leadership of project

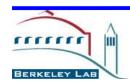
Devis Contarato VXD Ladder Engineering: from STAR to ILC

STAR/ILC VXD comparison

	STAR	ILC
Performance drivers	Low p _T D	b/c/τ tagging
Position resolution	~10 µm	2-4 µm
Radiation length	0.3% X _₀ /layer	0.1% X ₀ /layer
Number of layers	2	5-6
Ladders/layer	6+18	?
Operational T	40°C	-10°C 20°C
Cooling	Air flow	?
VTX mount	Side mount	Two sides

Devis Contarato


VXD Ladder Engineering: from STAR to ILC


Prototype STAR HFT Ladder

10 CMOS sensors

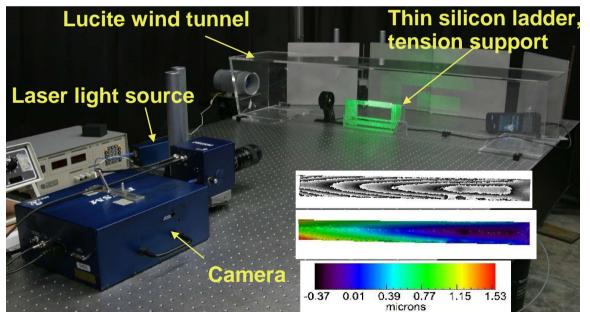
- At the end of the ladder:
 - > 20 I → V converters and drivers
 - Additional clock, control and JTAG connections
 - Power and ground
- Analog signals and clock/control transferred to motherboard via fine twisted pair cable
- 3 basic ladder constituents:
 - 1. APS sensor
 - 2. Cable
 - 3. Mechanical Carrier

End view of 2 prototype designs

Devis Contarato

VXD Ladder Engineering: from STAR to ILC

Test facilities at LBNL


• Environmental chamber (down to -70°C) for characterization of temperature cycling and humidity effects on prototype ladders

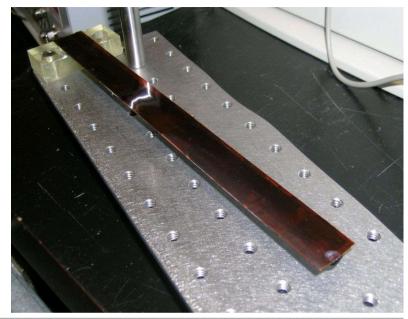
• High resolution IR camera for studying temperature gradient of prototype ladders, e.g. to study heat dissipation under power cycling

• Facility for studies of cooling and mechanical stability with nitrogen and air flow, equipped with a laser holography system for real time measurement of distortions in prototype structures with sub-µm resolution

 Capacitive probe system for sub-µm resolution measurement of reference positions. Bandpass of 1 KHz, above typical resonant frequencies of ladders
→ study displacements and vibrations induced by air cooling or other forces

• **Composite lab material** for fabrication of light structures

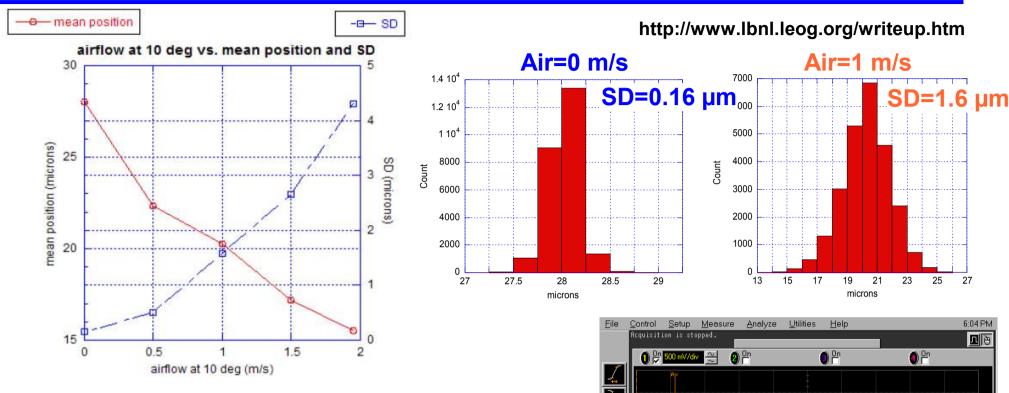
Devis Contarato VXD Ladder Engineering: from STAR to ILC


Test of STAR HFT Ladder Prototype

2 carrier candidatesTop layer = 50 μm CFCOuter shell = 100 μm CFCMiddle layer = 3.2 mm RVCFill = RVCBottom layer = 50 μm CFCFill = RVC

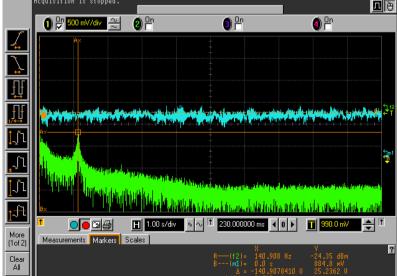
X₀ =0.11 %

- Displacement as a function of time measured using capacitive probe at unsupported end of prototype ladder (carrier+kapton+50 µm silicon)
- Fundamental resonance frequency measured from FFT of oscillations:
 - Measured = 139 Hz
 - Calculated = 135 Hz

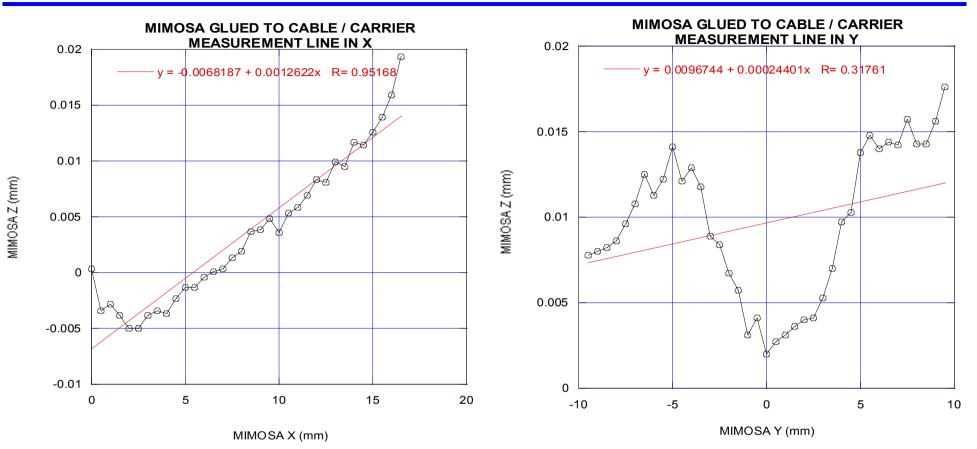


A Vertex Detector for the ILC

Ringberg, May 28-31, 2006


Vibration from air cooling

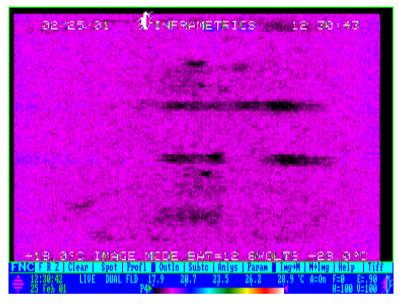
• Airflow at 10° onto prototype ladder measured at unsupported end gives measured location distribution with SD~1.6 μm at 1.0 m/s of airflow


• As the airflow increases, the free end of the ladder moves away from the capacitive probe, and the magnitude of the induced vibrations increases

Test of prototype Si flatness

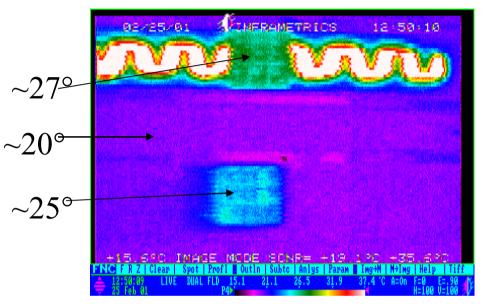
- Measurements performed at optical measuring machines at LBNL inspection and metrology shop
- 50 µm thin MIMOSA-5 sensors glued to cable and to support carrier
- \bullet Variations within 20 μm in both directions on sensor surface
- Individual pixel position can be located to the required accuracy by a parameterized location function

BERKELEY LAB


Devis Contarato

VXD Ladder Engineering: from STAR to ILC

Air cooling tests


Airflow = 0 Heaters = off

Emissivity of Si and Kapton is uniform

• IR thermal imaging of Si and Kapton

Airflow = 0.8 m/s Heaters = on

Si temperature rises ~5-7°C above ambient Good uniformity in temperature over sensor

- Upper test piece: 2 layers of 2 cm x 2 cm x 50 μ m thick Si glued to Pt heater serpentine strip at 100 mW/cm²
- Lower test piece: 2 layers of 2 cm x 2 cm x 50 µm thick Si with resistor heating at 164 mW along the upper edge and 90 mW distributed over the rest of the piece

http://www.lbnl.leog.org/ir_prelim_writeup.htm

STAR HFT Ladder Prototype Cable

- ~100 traces (2 LVDS pairs/sensor, clock, power, ground, control signals)
- 4 layer design, 25 μm kapton, 20 μm Al conductor
- Impedance controlled signal/clock pairs with power and ground geometrically arranged as shielding

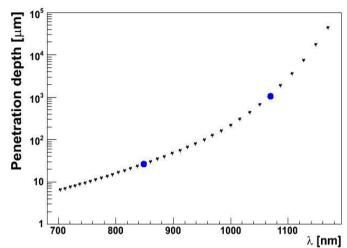
X₀ =0.090 %

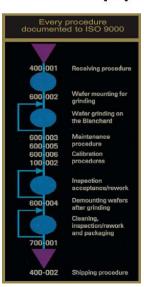
(for Al conductor)

<u>Component</u>	% radiation length	<u>Si equivalent (µm)</u>
MIMOSA detector	0.0534	50
Adhesive	0.0143	13.39
Cable assembly	0.090	83.92
Adhesive	0.0143	13.39
Carbon fiber / RVC carrier	0.11	103
<u>Total</u>	<u>0.282</u>	<u>263.7</u>

Devis Contarato VXD Ladder Engineering: from STAR to ILC

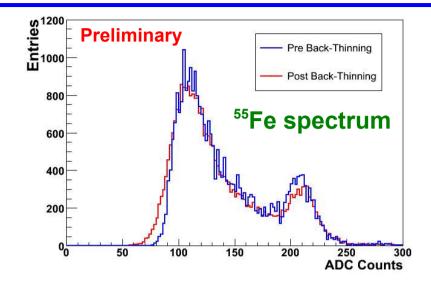
Back-thinning studies

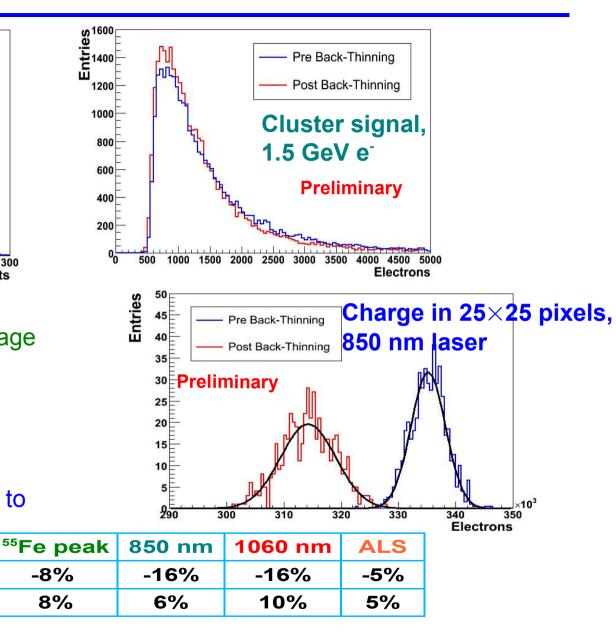

• Tests performed on diced MIMOSA-5 chips from IPHC/IReS (Strasbourg)


• AMS 0.6 μ m, 14 μ m epilayer, 1 Mpixels on reticle-size area of 1.7 \times 1.9 cm²,

- 17 µm pixel pitch
- Chips initially mounted to PCB with reversible glue and fully tested with 1.5 GeV e⁻ beam and lasers of different wavelengths → probe signal from different silicon depths and estimate substrate contribution

- Chips removed by heating to 120°C
- Back-thinning to 25-50 µm performed by Aptek (San Jose, CA), www.aptekindustries.com
 - Proprietary hot wax formula for wafer mounting to stainless grinding plates
 - Wet grind process + polishing
 - In-situ thickness measurement
- Re-mounting and re-characterization




Back-thinning to 50 µm: latest results

- Negligible variation of charge-to-voltage conversion gain
- No charge losses for MIP detection
- Small variations from laser tests: no significant contribution from substrate to collected charge

Mean

RMS

Devis Contarato

VXD Ladder Engineering: from STAR to ILC

+3%

7%

A Vertex Detector for the ILC

Ringberg, May 28-31, 2006

ILC LCRD Project at LBNL

- New Linear Collider R&D (LCRD) project for FY 2006-2008
- Design and prototype low mass detector modules
- Fully characterize mechanical behavior with thinned Si chips
- Assess sensor technology specifics for CMOS and DEPFET pixels
- Study air flow cooling in terms of heat extraction and ladder stability
- Investigate off-line software alignment procedures using existing algorithm developed for BaBar
- Project recently approved! Funds starting with 55 k\$ for 2006, to be increased in 2007-2008

Devis Contarato VXD Ladder Engineering: from STAR to ILC

