

CMOS Sensors for an ILC Vertex Detector

Marc Winter (IReS/IPHC-Strasbourg)

• Introductory remarks on CMOS sensors:

Specific advantages	Main R&D directions	Teams involved
Achieved performances :	-≎= S/N	Detection efficiency
Single point resolution	🗢 Thinning	⇔ Radiation tolerance
Read-out speed	Power dissipation	Operating temperature

• Main ILC VD requirements \rightarrow remaining R&D needs \rightarrow Plans for 2006 – 2009

Summary

-

MAIN FEATURES OF CMOS SENSORS

p-type low-resistivity Si hosting n-type "charge collectors"
signal created in epitaxial layer (low doping):
Q ~ 80 e-h / μm → signal ≤ 1000 e⁻
charge sensing through n-well/p-epi junction
excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

Ringberg - ILC

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \lesssim 30 μm permitted
- ♦ Standard, massive production, fabrication technology → cheap, fast turn-over
- ♦ Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation

High r.-o. speed, low noise, low power dissip., highly integrated signal processing architecture: * analog part (charge collection, pre-amp, CDS, ...) inside pixel

***** mixed (ADC) and digital (sparsification) micro-circuits integrated inside pixel or aside of active surface

Optimal fabrication process:			
* epitaxial layer thickness	* number of metal layer	rs 🔆 🔆 yield	
* (dark current)	※ cost	* life time of proce	ess
Radiation Tolerance:			
* dark current	* doping profile	(* latch-up)	
Room temperature operation:			
* minimise cooling requirement	ents * per	formances after irradiation	
Industrial thinning procedure:			
* minimal thickness * r	mechanical prop. 🛛 💥 individu	al chips rather than wafers	<mark>∦ yield</mark>

Several groups design CMOS sensors for charged particle tracking :

- ⇔ BELLE upgrade → SuperBELLE: Univ.Hawaï
- STAR upgrades: IReS/IPHC (Strasbourg)

\Rightarrow **ILC (EUDET** \subset **E.U. FP-6)**:

IReS/IPHC (Strasbourg), DAPNIA (Saclay), LPC (Clermont), LPSC (Grenoble), Univ. Roma-3, Univ. Bergamo, Univ. Pavia, Univ. Pisa, RAL, LBL, BNL, Univ. Oregon & Yale (SARNOF), others (?)

Several additional groups involved in chip characterisation & detector integration issues : DESY & Univ.Hamburg, GSI, Univ.Frankfurt, LBL-STAR, Univ. Geneva, INFN: Como, Milano, Roma-3, etc.

R&D for Super BELLE: hits in 1st beam telescope made of 4 CAP-2 sensors exposed to 4 GeV/c π^- (KEK)

M.I.P. TRACKING PERFORMANCES:

PIXEL & CLUSTER CHARACTERISTICS,

DETECTION EFFICIENCY

Several MIMOSA chips tested on H.E. beams (SPS, DESY) \mapsto well established performances :

- Best performing technology: AMS 0.35 μm OPTO (11–12 μm epitaxy → "20 μm" option tests in Fall'06)
 N ~ 10 e⁻ → S/N ≥ 20 30 (MPV) ⇒ ϵ_{det} ≥ 99.5 %
- ullet T $_{oper.}$ \gtrsim 40 $^{\circ}$ C
- Technology without epitaxy also performing well : very high S/N but large clusters (hit separation)
- Macroscopic sensors : MIMOSA-5 (\sim 3.5 cm 2 ; 1 Mpix) and CAP-3 (0.3 x 2.1cm 2 ; 120 kpix) for BELLE

Efficiency vs rate of fake clusters :

- vary cut on seed pixel : 6 \rightarrow 12 ADC units
- ullet vary cut on Σ of crown charge : 0, 3, 4, 9, 13, 17 ADC units

 $rightarrow \epsilon_{det}$ \sim 99.9 % for fake rate \sim 10 $^{-5}$

Single point resolution versus pixel pitch:

- clusters reconstructed with eta-function,
 exploiting charge sharing between pixels
- $egin{aligned} & oldsymbol{\sigma_{sp}} \sim \mathbf{1.5} \; \mu \mathbf{m} \, ext{(20} \; \mu m \; ext{pitch)} \ & igeta \sigma_{\mathbf{sp}} \lesssim \mathbf{3} \; \mu \mathbf{m} \, ext{(40} \; \mu m \; ext{pitch)} \end{aligned}$

 $\sigma_{{f sp}}$ dependence on ADC granularity:

minimise number of ADC bits

 \rightarrowtail minimise dimension and power dissipation

⇔ effect simulated on real MIMOSA data (20 μm pitch ; 120 GeV/c π^- beam)

▷▷ σ_{sp} < 2 μm (4 bits) \rightarrow 1.7–1.6 μm (5 bits) (MIMOSA-9 : 20 μm pitch; T= + 20 $^{\circ}$ C)

➡ Warning : foresee safety margin w.r.t. epitaxy thickness
→ ability to adapt to future fabrication processes

Thinning of MIMOSA-5 sensors (3.5 cm^2) for STAR detector upgrade:

- 🗢 3 wafers thinned via LBNL to 50 \pm 5 μm
- result satisfactory (after pre-dicing):
 sensors can be manipulated and mounted on support
- ⇒ 3 ladder prototypes fabricated at LBL (\geq 0.25 % X₀)
 → up to 9 sensors mounted on ladder and tested
- ⇒ Next: MIMOSTAR-3 prototypes will be thinned to 50 μm in Autumn and mounted on ladders inside STAR

⇒ studies will presumably be extended to ILC vertex detector (including cooling) via LBNL-ILC team

Thinning trials in Europe and Asia :

- \Rightarrow MIMOSA-5 chips thinned by TRACIT (near Grenoble) to 70 and 50 \pm 5 μm (full wafers needed)
 - \Rightarrow thinned chips are waiting for characterisation
- ⇔ Thinning trials are also under way at ESIEE (Paris) and Dalian (China)

MIMOSA-8: TSMC 0.25 μm digital fab. process (\lesssim 7 μm epitaxy)

- 32 // columns of 128 pixels (pitch: 25 μm)
- ullet read-out time \sim 50 μs (resp. 20 μs) with (resp. without) DAQ
- on-pixel CDS
- discriminator (and CDS) integrated at end of each of 24 columns

Excellent m.i.p. detection performances despite modest thickness of epitaxial layer

st det. eff. \sim 99.3 % for fake rate of \sim 0.1 % st discri. cluster mult. \sim 3–4 st P $_{diss} \lesssim$ 500 μ W / col.

 $\triangleright \triangleright$ Architecture validated for next steps: techno. with thick epitaxy, rad. tol. pixel at T_{room}, ADC, Ø, etc.

Ensure $\epsilon_{det} >$ 99 % with very few fake hits, $\sigma_{IP} \sim$ few μm & efficient double hit separation \Rightarrow distinguish small Q deposits due to: * negative Landau fluctuations (seed) * pixels in

***** pixels in cluster crown

 $>>> \ge$ 3 effective bits OK \mapsto base line: 4 – 5 bits \rightarrow safety margin w.r.t. epitaxy thickness of final prod. techno.

Read-out frequency : \geq 10 MHz / column or \geq 20 MHz / pair of columnsDimensions : 20–30 x 1000 μm^2 / column
or 40–60 x 1000 μm^2 / pair of columnsPower consumption : \leq 0.5 mW / column or 1 mW / pair of columns

 \hookrightarrow several alternative ADC architectures studied in // by 5 teams :

Clermont (flash), Grenoble (semi-flash), Saclay (succ. approx.), Strasbourg (Wilkinson, succ. approx.), LBL

Ringberg - ILC

> Fast col. // architecture (like MIMOSA-8), allowing to process signal (CDS, ADC, sparsification) during BX: \hookrightarrow complex, close to technology limits \mapsto much design & test effort needed (but quite universal output)

Alternative \mapsto 2 phase μ circuit architecture exploiting beam time structure, reducing data flux (& EMI sensitivity ?):

- 1) charge stored (eventually sampled) inside pixel during train crossing: O(1) ms
- 2) signal transfered and processed inbetween trains: O(100) ms

Different strategies of storage during train crossings (RAL, Hawaï, IPHC, Yale-Oregon):

 $\hookrightarrow \lesssim$ 50 μs long snapshots/capacitor

▷ Difficulty: are small capacitors precise enough ?

 \therefore 20 – 25 μm large pixels with \gtrsim 20 capacitors \therefore \lesssim 5 μm large pixels with 1 capa.(hit position) and 50 μm large pixels for hit zone selection + time stamp

 \triangleright Difficulty: can cluster size be \leq 3 pixels ?

Ringberg - ILC - Improving Charge Collection & Signal Proc. Capabilities

- Increase collected charge by enlarging depleted volume:
 - increasing N-well potential (very limited possibilities)
 - enlarging surface of N-wells inside pixels (\mapsto increases capacitance noise)
 - \hookrightarrow use standard N-well to integrate P-MOS T for signal processing
- Ex: triple-well technology (STM 0.13 $\mu m \rightarrow$ 0.09 μm) (Univ. Bergamo, Pavia, Pisa) :
 - ▷ Buried n-channel electrode:
 - ♦ Try integrating signal processing μ circuits → self triggered pixels (?)
 - \diamond Test structures (43 μm pitch) fab. & tested
 - \hookrightarrow next step: \sim twice smaller pitch

- Ex: unidepleted active pixel sensors (P.Rehak et al.) :
 - ▷ Pixels composed of concentric rings of n-wells:
 - ♦ Can they host P-MOS T for signal processing ?
 - Can they provide time stamping ?

Ringberg - ILC - Radiation Tolerance: Non-Ionising Radiation

AMS-0.35 OPTO (\sim 11 μm epitaxy) \triangleright S/N (MPV) vs fluence and T (tests at CERN-SPS):

Fluence	T = -20 [°] C	$T = 0^{\circ}C$
0	28.4 ± 0.2	26.3 ± 0.2
10 11 n $_{eq}$ /cm 2	25.3 ± 0.2	24.5 ± 0.4
3·10 11 n $_{eq}$ /cm 2	_	23.0 ± 0.2
10 $^{12}~{\sf n}_{eq}$ /cm 2	18.7 \pm 0.2	—

Conclusion: fluences of $\gtrsim 10^{12} n_{eq} / cm^2$ affordable (room temperature operation compatible with ILC neutron bg) $\mapsto \epsilon_{det} \sim 99.74 \pm 0.08 \%$ ($10^{12} n_{eq} / cm^2$; T = -20°C)

st Fluences \gtrsim 1·10¹³ n $_{eq}$ / cm^2 can presumably be accomodated

Radiation Tolerance : Ionising Radiation

Modified pixel design to accomodate ionising radiation (e.g. 10 keV X-Rays):

removal of thick oxide nearby the N-well (against charge accumulation)

Ringberg - ILC

• implantation of P+ guard-ring in polysilicon around N-well (against leakage current)

Noise (e⁻ENC) vs Integration time (ms) for Ordinary and Radiation Tolerant pixels (T = - 25 $^{\circ}$ C, + 10 $^{\circ}$ C, + 40 $^{\circ}$ C)

ho
ho
ho
ho 500 kRad tolerance demonstrated at T $_{
m room}$

Radiation Tolerance : Low Energy Electrons

Investigation of sensitivity to \sim 10 MeV electrons (NIEL factor \sim 1/30) \hookrightarrow similar to beamstrahlung e[±] in 4 T field at 15 mm radius

- 1) MIMOSA-9 exposed to $10^{13} e_{9.4MeV}^{-}$ /cm² in Darmstadt : equivalent to \leq 300 kRad/cm² and \sim 3.10¹¹n_{eq}/cm²
- 2) Irradiated chip tested with \sim 6 GeV e $^-$ at DESY

Ringberg - ILC

 \hookrightarrow Test result at -20°C : S/N \sim 23 $\mapsto \epsilon_{det} > 99.3\%$ (before irradiation: S/N \sim 28 and ϵ_{det} = 99.93 \pm 0.03 %)

> Sensors still need to be tested at room temperature (compatible with very light cooling system)

MAIN REQUIREMENTS OF THE ILC VERTEX DETECTOR

 $\sigma_{IP} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \mathbf{sin^{3/2}} \theta$ with $\mathbf{a} < \mathbf{5} \ \mu m$ and $\mathbf{b} < \mathbf{10} \ \mu m$

 \triangleright limits on ${f a}$ and ${f b}$ are still "very educated guesses"

 \triangleright SLD: a = 8 μm and b = 33 μm

Upper bound on ${f a}$ drives the pixel pitch and the inner and outer layer radii

Upper bound on b drives radius and material budget of inner layer (& beam pipe)

Constraint on σ_{IP} satisfies simultaneoulsy requirement on double hit separation in inner most layer (\sim 30 – 40 μm)

• Numerical examples based on ${f R_4}=4\cdot {f R_0}$ (ex: ${f R_4}/{f R_0}$ = 60 / 15 mm or 64 / 16 mm)

$$ightarrow \Delta z_4 = \Delta z_0 = \sigma_{sp} = 3 \ \mu m \Rightarrow a \approx 1.37 \cdot 3 \ \mu m \approx 4.1 \ \mu m$$

 $ightarrow\Delta z_4=5\,\mu m$ and $\Delta z_0=2.5\,\mu m$ \Rightarrow $a~pprox~1.5\cdot2.5\,\mu m$ $pprox~3.8\,\mu m$

 \Rightarrow Twice larger pitch in outer layer than in inner most layer satisfies constraint ${
m a} < 5\,\mu{
m m}$

$$\begin{array}{c|c} \text{Constraint on } b: \ b \ \thickapprox \ 0.0136 \cdot (1 + 0.038 \cdot \ln t / sin \theta) \cdot \mathbf{R_0} \cdot \sqrt{t} & \text{where} \ t = \frac{\mathbf{e_{pipe}}}{\mathbf{X_0^{Be}}} + t_{\mathbf{L0}} \end{array} \end{array}$$

$$\triangleright \mathbf{b} < \mathbf{10} \ \mu \mathbf{m} \ \Rightarrow \mathbf{t} \lesssim \mathbf{0.4} \ \%$$
$$\triangleright \mathbf{e_{pipe}} \ \approx \ \mathbf{400} - \mathbf{500} \ \mu \mathbf{m} \ \mapsto \ \frac{\mathbf{e_{pipe}}}{\mathbf{X_0^{Be}}} \sim \mathbf{0.11} - \mathbf{0.14} \ \% \ \mapsto \ \mathbf{t_{L0}} \lesssim \mathbf{0.25} \ \%$$

Ladders equipped with CMOS sensors & developed for STAR HFT reach already \sim 0.3 % ${f X_0}$

1st layer (L0) : \gtrsim 5 hits/cm²/BX for 4T / 500 GeV / R_0 = 1.5 cm / no safety factor $\mapsto \lesssim$ 1.8·10¹² e[±]/cm²/yr (safety factor of 3)

Ind layer: 8 times less

• 3rd layer: 25 times less

Consequences on Occupancy in 1st layer (L0): \leq 0.9 % hit occupancy in 50 μs (r.o. time of TESLA TDR) \hookrightarrow signal spread on \leq 4.5–9 % pixels (cluster multiplicity \sim 5-10)

Consequences on Radiation Tolerance in L0 :

* dose integrated over 3 years: $\leq 5.4 \cdot 10^{12} \text{ e/cm}^2 \longrightarrow \leq 2 \cdot 10^{11} \text{ n}_{eq}/\text{cm}^2$ (NIEL $\sim 1/30$) \diamond neutron dose integrated over 3 years much smaller : $\leq 3 \cdot 10^{10} \text{ n}_{eq}/\text{cm}^2$ (safety factor of 10)

25 μs in L0:
columns of 256 pixels (20 μm pitch) \perp beam axes
read out in // at ~ 10 MHz \rightarrow 5 mm depth

 \sim 50 μs in L1:

columns of 512 pixels (25 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 13 mm depth

100 mm

2 mm wide side band hosting ADC, sparsification, ... \hookrightarrow effect on material budget SMALL :
b increases by \sim 5 – 10 %

Option with discriminator instead of ADC : \sim 1 mm wide side band \Rightarrow effect on ${f b}<$ 5 %

Ringberg - ILC

Geometry : 5 cylindrical layers (R = 15 – 60 mm), $||cos\theta|| \le 0.90 - 0.96$

L0 and L1 : fast col. // architecture

L2, L3 and L4 : multi-memory pixel architecture (?)

Pixel pitch varied from 20 μm (L0) to 40 μm (L4) by 5 μm steps ightarrow minimise P $_{diss}$

Layer	Radius (mm)	Pitch (μm)	t _{r.o.} (μs)	N_{lad}	N _{pix} (10 ⁶)	P ^{inst} diss (W)	P ^{mean} diss (W)
L0	15	20	25	20	25	<100	<5
L1	\leq 25	25	50	\leq 26	\leq 65	<130	<7
L2	37	30	<200	24	75	<100	<5
L3	48	35	<200	32	70	<110	<6
L4	60	40	<200	40	70	<125	<6
Total				142	305	<565	<3–30

Ultra thin layers: \leq 0.2 % X $_0$ /layer (extrapolated from STAR-HFT; 35 μm thick sensors)

Very low P_{diss}^{mean} : << 100 W (exact value depends on duty cycle) Fake hit rate $\leq 10^{-5} \rightarrow$ whole detector \cong 100 MB/s (mainly from e_{BS}^{\pm}) Impact parameter resolution :

Ringberg - ILC

 $\Rightarrow a < 5 \ \mu m \quad \checkmark$ $\Rightarrow b < 10 \ \mu m \quad \checkmark \rightarrow \text{thinning } \checkmark \text{, ladder design } \checkmark \text{ (from STAR), stitching not yet investigated}$

Radiation tolerance at room temperature :

Fast, low power, integrated signal processing :

```
\Rightarrow read-out speed \checkmark
```

 \Rightarrow integrated ADC \rightarrowtail under developement

 \Leftrightarrow integrated sparsification \rightarrowtail studies starting

 \Rightarrow power dissipation \checkmark (duty cycle < 1/20) \rightarrowtail pulsed powering not fully assessed for this duty cycle

Minimal option \Rightarrow // columns providing binary output after pixel discrimination at the column ends

*** Motivations :**

- \Rightarrow existence of well working prototype \Rightarrow MIMOSA-8 : det.eff. \sim 99.3 % , fakes \sim 10 $^{-3}$, r.o. time \sim 50–100 μs
 - \Rightarrow translation in AMS-0.35 OPTO (with rad. tol. pixel) under way \Rightarrow large proto. in '07 (256 x 256 pixels) ?
 - \Rightarrow ~ 1000 hits/BX in whole detector (mainly e $^\pm_{BS}$, ~ no fake hits) \Rightarrow 14·10 6 hits/s
 - \Rightarrow \sim 100 MB/s for whole detector (2-3 Bytes / addressed hit ; \leq 3 addressed hits / cluster)
- ⇔ simplicity w.r.t. 4- or 5-bit ADC design
- ⇔ almost twice less power dissipated per column
- \Rightarrow CMOS band on chip periphery shrinks to \sim half size (\lesssim 1 mm) \Rightarrow mat. budget slightly reduced
- *** Drawbacks :**
 - ⇔ need smaller pitch in order to keep high single point resolution
 - \triangleright ex: 15 μm pitch ightarrow 4.3 μm binary resolution ightarrow resolution of clusters of 3 4 pixels ?
 - \Rightarrow smaller pitch \rightarrow more pixels per column \rightarrowtail slower frame r.o. (ex: 34 μs instead of 25 μs)
 - \Rightarrow slimmer columns \rightarrowtail sensor subdivided in more columns \rightarrowtail increased power dissipation

(recovers what was won from avoiding ADCs)

⇒ less beamstrahlung electron identification capabilities ?

Design inner most layer (L0) to minimise its sensitivity to (unexpected) high occupancy (\gtrsim 10 %)

Double sided layer \rightarrowtail \sim 1 mm long mini-vectors connecting impacts on both sides of layer

▷ Needs a detailed feasibility (engineering) study

-

PLANS FOR 2006 – 2009

CMOS sensors will be operated in real (less demanding) experiments before end of decade

 \rightarrow opportunity to assess their performances for the ILC running conditions

MIMOSA sensors will equip STAR Heavy Flavour Tagger:

* 2008: analog output, 4 ms frame r.o. time

st 2011: digital output, \lesssim 200 μs frame r.o. time

▷ similar sensors will equip EUDET (FP-6) beam telescope:

*** 2007:** demonstrator with analog output

* 2008: final device with digital output

CMOS sensors are also developed for BELLE Vertex Detector → R&D in Hawaï

2006:

* Production (engineering run) : STAR demonstrator final proto., EUDET Beam Telescope demonstrator \hookrightarrow studies : yield, "20 μm " option, thinning, perfo. with inclined tracks, ...

*** Prototyping :** various ADCs, col. // discri. archi., FAPS, high-resol. array, new fab. techno.

2007:

*** Production (engineering run):** final chip for STAR demonstrator (analog output)

* Prototyping : small array with integ. ADC/col. , medium size fast array with integ. discri.,

 \emptyset μ circuits, new fab. techno., stitching (?)

2008:

* Production (engineering run): EUDET Beam Telescope final sensor (digital output) * Prototyping : medium size pixel array with integ. ADC & \emptyset , new fab. techno.,

1st ladder equipped with fast sensors (?), ...

2009:

*** Production (engineering run):** final STAR-HFT sensors (digital output), etc.

-

SUMMARY

CMOS sensor technology R&D started in 1999 :

 \Rightarrow now assessed quite extensively \rightarrow attractive vertexing performances well established

 \Rightarrow 1st detector made of CMOS sensors should be commissioned in a few years :

⇒ STAR-HFT : 1) 2008, 2) 2011 ⇒ BELLE-VD (≤ 2010 ?) ⇒ EUDET beam telescope : 1) 2007, 2) 2008
 ⇒ baseline architecture quite close to ILC requirements

Wide spectrum of CMOS sensor potential still poorly explored/exploited (even if not crucial for ILC):

- **Growing R&D community undertaking the challenge (e.g. integrated signal processing)** :
 - $m carconomed \sim 10$ groups involved in chip design
 - $\Rightarrow \geq$ 10 groups concentrating on tests and integration issues (still poorly covered).

CMOS sensor technology R&D started in 1999 :

 \Rightarrow now assessed quite extensively \rightarrow attractive vertexing performances well established

 \Rightarrow 1st detector made of CMOS sensors should be commissioned in a few years :

⇒ STAR-HFT : 1) 2008, 2) 2011 ⇒ BELLE-VD (≤ 2010 ?) ⇒ EUDET beam telescope : 1) 2007, 2) 2008
 ⇒ baseline architecture quite close to ILC requirements

Wide spectrum of CMOS sensor potential still poorly explored/exploited (even if not crucial for ILC):

- **Compute Series and Se**
 - \Rightarrow \sim 10 groups involved in chip design
 - \Rightarrow \gtrsim 10 groups concentrating on tests and integration issues (still poorly covered).

 \Rightarrow Main R&D efforts in the coming years:

• Fast col. // architecture with integ. ADC & sparsification $\,$ • Fab. proc. with feature size < 0.25 μm

• More in-pixel functionnalities : FAPS, self-triggered, time stamping, ...

- \diamond Complete radiation tolerance studies (T \gg 0 $^{\circ}$ C) \diamond Complete thinning \sim 50 μm & try \lesssim 35 μm
- Develop ladder concept equiped with CMOS sensors
 Investigate stitching

ho
ho Full L0 prototype ladder satisfying \sim all requirements should be ready \lesssim 2010

Modified pixel design:

- removal of thick oxide nearby the N-well (against charge accumulation)
- implantation of P+ guard-ring in polysilicon around N-well (against leakage current)

