CMOS Monolithic Pixels R&D at LBNL

A Vertex Detector for the ILC Workshop at Ringberg Castle, May 28-31, 2006

Devis Contarato

Lawrence Berkeley National Laboratory

M. Battaglia, B. Hooberman, L. Tompkins (UC Berkeley & LBNL) J.-M. Bussat, P. Denes, L. Greiner, T. Stezelberger, H. Wieman (LBNL)

Outline

Introduction

- Summary of results from 1st prototype
 - > Beam-test with 1.5 GeV electrons
 - > Laser scan for position resolution studies
 - > Irradiation with 30 MeV protons
- Design of 2nd prototype
- Outlook: future plans

Introduction: Silicon Pixel R&D at LBNL

- ILC Silicon Pixel R&D supported by 3-year Laboratory Directed R&D funding started in October 2004
- R&D directions:
 - sensor design and characterization
 - readout development
 - back-thinning tests
 pixel module engineering

→ see talk in Session on Integration

- » pixel module engineering j
- Synergy with other on-going LBNL activities on CMOS pixels: STAR VXD upgrade, electron microscopy, existing infrastructure from ATLAS pixels
- Availability of test facilities on site:
 - Advanced Light Source: beam-tests with 1.5 GeV e⁻
 - 88-inch Cyclotron: irradiations with 30-50 MeV p, neutrons
 - National Center for Electron Microscopy (NCEM)

Devis Contarato CMOS Monolithic Pixels R&D at LBNL

The first CMOS pixel test structure @ LBNL

- LDRD-1: first CMOS pixel test structure developed and fabricated (through MOSIS) in 2005 in collaboration with LBNL Engineering Division
- \bullet 0.35 μm OPTO AMS prototype, 3-T pixels, serial analog readout
- Three pixel geometries
 - > 12 x 36 40 µm pixels
 - 24 x 72 20 µm pixels
 - > 48 x144 10 µm pixels

- Xilinx FPGA based readout board (LBNL development)
- 14 bit digitization, interface with PC with LabView program for data acquisition and online event display
- C++/ROOT based off-line data analysis

Beam-test at the Advanced Light Source

- Test performed at the BTS beam line of the Advanced Light Source (ALS)
- Single bunch of primary 1.5 GeV e⁻ @ 1 Hz, tunable particle flux
- Readout sequence:
 - > detector kept in reset between 2 bunches
 - trigger on beam pick-up signal, read 4 frames, timing tuned to record signal on 3rd frame
 - readout with 1 ms integration time

• Pixel noise and pedestals initialized with beam off, update during run on empty frames

Beam-test results

- Measurements performed at room T (24°C)
- Compare width of Landau fit to e⁻ data to thin straggling function prediction for different active volume thicknesses
- Best agreement for 10 µm of Si, corresponding to MPV energy loss of 1.86 keV → 505 e⁻

Pixel pitch	10 µm	20 µm	40 µm
<nb pixels=""></nb>	2.71	2.67	2.37
<s n=""></s>	14.1	14.5	15.4

A Vertex Detector for the ILC

Ringberg, May 28-31, 2006

Position resolution studies

- Pixel scan with focused (~10 µm) 850 nm laser spot
- Plot $\eta = PH_{column}^{i}/PH_{cluster}$ versus laser spot position
- From variation of signal fraction vs position along the pixels and S/N estimation of spatial resolution: ~2.0, 3.3, 5.1 μ m for 10, 20, 40 μ m pitch pixels
- \bullet Uncertainty on measurement on 10 μm pitch pixels due to size of laser spot comparable with pixel size

Devis Contarato CMOS Monolithic Pixels R&D at LBNL

Irradiations at the 88" Cyclotron

- Irradiation with 30 MeV protons up to 1.4×10^{12} p/cm² at the BASEF facility
- Facility available to users, irradiation of DEPFET single pixel prototype in Summer
- Proton flux ~7×10⁷ p/cm²/s
- Irradiation in steps: pedestal noise recorded after each step
- Detector powered on and kept in readout mode during irradiations

A Vertex Detector for the ILC Ringberg, May 28-31, 2006

82 84 86 88 90

30 MeV p hit cluster

Test of irradiated prototype

BERKELEY LAB

Outlook: next prototype submission

- LDRD-2: second prototype chip submission in Summer
- \bullet AMS 0.35 μm OPTO technology through CMP
- Larger size ~3×3 mm², different sectors, all with 20×20 μm^2 pitch
- Explore different architectures/parameters in different sectors:
 - In-pixel CDS
 - 3-T vs self-bias architecture
 - Size of charge collecting diodes (3×3 µm², 5×5 µm²)
- High speed output line option

- Includes circuitry for charge injection tests: plan to study capacitive coupling between pixels
- Started design of 5-bit ADC with low power consumption matching a 15 μ m pixel pitch
- \rightarrow larger scale prototype including CP readout and on-chip ADC foreseen in 2007

Devis Contarato CMOS Monolithic Pixels R&D at LBNL

Outlook: future plans

 Completed first iteration of design/fabrication/characterization of prototype CMOS pixel sensor; two further chips under design to explore CDS and ADC functionalities

- Further tests:
 - Neutron irradiation at new line at 88-inch Cyclotron in Summer
 - Small tracker with reference 50 µm thin sensors for efficiency studies at ALS beam-test

• Next prototype to be available after Summer: readout development starting soon

• Extend back-thinning studies to 35 μ m: test of all steps of the procedure needed (handling, mounting, bonding, etc...)

 Proposal for CMOS pixel telescope (small version of EUDET one) for beam-tests at FNAL

Devis Contarato CMOS Monolithic Pixels R&D at LBNL

