

Alignment des Pixeldetektors am ATLAS Experiment mittels Teilchenspuren

Tobias Göttfert

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

BAYERISCHE JULIUS-MAXIMILIANS UNIVERSITÄT WÜRZBURG

DPG Frühjahrstagung Sektion Teilchenphysik 31. März 2006

Pixeldetektor - Geometrie

- 2x3 Endkappen-Disks mit 288 Modulen
- 3 Barrel Lagen mit 1456 Modulen
 - um 20° verkippt ("turbine arrangement")
 - \Rightarrow Überlapp

deckt $|\eta| < 2,5$ ab

ATLAS Pixeldetektor

- 1744 Module à 16,4 · 60,8 mm²
- n⁺ auf n Siliziumdetektor
- 46080 Pixel à 50 · 400 µm²
- Auflösung: $\sigma_x = 14,4 \ \mu m$, $\sigma_y = 115,5 \ \mu m$
- Auslese: 16 FE chips (bump bonded), 1 MCC (wire bonded)

Clustern von Nachbarhits (digital oder ToT-gewichtet)

Alignment Überblick

- Genaue Kenntnis aller Detektorpositionen unerlässlich für u.a.:
 - exakte Vertexrekonstruktion und b-tagging
 - hohe Impulsauflösung
 - \Rightarrow W-Massenmessung
 - \Rightarrow Top-Massenmessung
 - \Rightarrow Higgssuche
 - \Rightarrow b-Physik, ...

mindestens benötigte Alignmentpräzision (TDR):

PIXEL	Local x		Local y		Local z	
	required	as-built + survey	required	as-built + survey	required	as-built + survey
barrel	1 - 7 µm	50 µm	20 µm	20 µm	10 - 20 µm	50 µm
endcap	1 - 7 µm	5 µm	20 µm	5 µm	100 µm	13 µm

<u>Alignmentstrategien</u>:

- Survey nach dem Zusammenbau
- Survey während des Betriebs (z.B. FSI bei SCT)
- Spurbasiertes Alignment

Spurbasiertes Alignment – MPI Ansatz

- Verwendeter Ansatz:
 - 1 Linearisierte χ^2 -Minimierung, $\chi^2 = \frac{r^2}{\sigma^2}$
 - lokal (keine Korrelationen zwischen Modulen) \Rightarrow Iterieren
- Pixel hat zwei unabhängige Koordinaten \Rightarrow 2 Residuen für x- und y-Koordinate
- "DOCA"-Residuen:
- Lösung für die 6 Alignmentparameter Δa
 (3 Translationen, 3 Rotationen) jedes Moduls:

$$\Delta \vec{a} = -\left(\sum_{i \in tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right)^T\right)^{-1} \cdot \left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \vec{r}_i(\vec{a}_0)\right)$$

MultiMyon sample - Residuenverteilungen

150000 Tracks mit simulierten μ^{\pm} , 2 – 60 GeV, nominale ATLAS-Detektorgeometrie

Tobias Göttfert, MPI für Physik

CombinedTestBeam -Residuenverteilungen

- Teststrahl 2004: 180 GeV Pionen
- 6 Pixelmodule (ein Schnitt durchs Barrel)
- Residuen (mit festgehaltenem Impuls) nach 1 Iteration nach 30 Iterationen

CombinedTestBeam – Alignmentparameter-Fluss

Zusammenfassung

- Alignment-Algorithmen für ATLAS-Pixeldetektor verfügbar
- Lokaler χ^2 -Ansatz:
 - 1 funktioniert für Pixel und SCT
 - 1 DOCA-Residuen auf jede Geometrie anwendbar
 - 1 Basisfunktionalität implementiert
 - . "exciting new features soon to come":
 - Berücksichtigung von PixelClustering
 - Alignment größerer Strukturen
 - Alignment mit kosmischen Tracks
 - Vertex-Bedingung
 - Einbeziehung des TRT, ...

backup slides

MultiMyon sample – Alignmentparameter (barrel) Flow

