QED Corrections to Top Pair Production at the LHC

Monika Kollar, Wolfgang Hollik

Max-Planck-Institut für Physik München (Werner-Heisenberg-Institut)

70th Annual Meeting of the DPG March 28-31, 2006 – Dortmund

Outline

- motivation & present status
- QED corrections
- hadronic cross section
- numerical results
- conclusions and outlook

Motivation

- pp collisions at $\sqrt{S} = 14$ TeV
- $\sigma_{t\bar{t}}$ ~ 800 pb
- about 8 million $t\overline{t}$ pairs/year
- top factory

Tevatron :

- pp collisions
- Run II at $\sqrt{S} = 1.96$ TeV
- $-\sigma_{t\bar{t}}$ ~ 7 pb

Motivation

top pair cross section :

- precise determination of the top mass
 - constraint on the Higgs mass
 - input parameter to SM extensions
- consistency checks of the SM
- search for new physics in the tt invariant mass spectrum

precise predictions are important

Motivation - Status

present status of higher order calculations :

- QCD NLO corrections [Dawson, Ellis, Nason '88]
- EW NLO corrections [Beenakker et al '93]
- NLO+NLL resummation [Bonciani, Catani, Mangano, Nason '98]

however, QED corrections are missing

- gauge invariant subclass of full EW corrections
- needed to complete the SM 1-loop picture
- zero mass of the photon leads to IR singularities which have to be compensated

Monika Kollar

#6

Partonic Process – Born level

quark - antiquark annihilation

q q g g t t

 \sim 90% at the Tevatron

gluon fusion

QED 1-loop corrections

8

box

counter terms

bremsstrahlung

QED 1-loop corrections

gluon fusion & quark-antiquark annihilation:

- IR singularities regularised by photon mass parameter λ
- soft singularities combined using phase space slicing (substraction method)
- phase space slicing:
- photon bremsstrahlung soft part: $E_{\gamma} \leq \Delta E$ analytically, soft photon approximation

– hard part: $E_{\gamma} > \Delta E$ numerically, Monte Carlo

- $\sigma_{1-loop} = \sigma_{Born} (1 + \delta_{virt} + \delta_{soft}) + \sigma_{hard}$ - independent of λ , ΔE

quark-antiquark annihilation:

- quark masses neglected unless in loop integrals
- collinear singularities regularised by quark mass $m_{\rm q}$ large terms log $m_{\rm q}$ $\,$ in the initial state only
- photon spectrum collinear part: $\theta_{f\gamma} \leq \Delta \theta$ analytically – non-collinear part: $\theta_{f\gamma} > \Delta \theta$ numerically, Monte Carlo

 $- \sigma_{1-\text{loop}} = \sigma_{\text{Born}} (1 + \delta_{\text{virt}} + \delta_{\text{soft}} + \delta_{\text{coll}}) + \sigma_{\text{hard,non-coll}} - \text{independent of } \lambda, \Delta E, \Delta \theta$

log m_q still survive

QED 1-loop corrections

quark-antiquark annihilation - more complications:

- IR divergences coming from the gluon
- photon bremsstrahlung cancels only the photonic IR singularities
- need gluon bremsstrahlung look for appropriate contribution of $O(\alpha \alpha_s^2)$
 - QED Born leads to $O(\alpha^2 \alpha_s)$
 - interference of QCD & QED zero at the Born level
 - non-zero for gluon bremsstrahlung in the initial-final state interference
- interplay between QED & QCD interactions

$$\sigma(P_{1}, P_{2}) = \sum_{i,j} \int dx_{1} dx_{2} \underbrace{f_{i}(x_{1}, Q) f_{j}(x_{2}, Q)}_{\text{parton distribution functions}} \underbrace{\hat{\sigma}_{ij}(p_{1}, p_{2}, Q)}_{\text{partonic cross section}} p_{1,2} = x_{1,2}P_{1,2}$$

$$\frac{dL_{ij}}{d\tau} = \frac{1}{1 + \delta_{ij}} \int_{\tau}^{1} \frac{dx_{1}}{x_{1}} \left[f_{i}(x_{1}, \mu) f_{j}\left(\frac{\tau}{x_{1}}, \mu\right) + (1 \leftrightarrow 2) \right] \text{ parton luminosity}} \qquad \tau = x_{1}x_{2}$$

$$\sigma(S) = \sum \int_{\tau_{0}}^{1} \frac{d\tau}{\tau} \left(\frac{1}{S} \frac{dL_{q\bar{q}}}{d\tau} \hat{s} \hat{\sigma}_{q\bar{q}}(\hat{s}) + \frac{1}{S} \frac{dL_{gg}}{d\tau} \hat{s} \hat{\sigma}_{gg}(\hat{s}) \right) \qquad \tau_{0} = 4m_{t}^{2}/S$$

- absorb initial state collinear singularities into PDF's using a factorisation scheme
- result independent of m_q but dependent on factorisation scale Q
- need PDF at NLO QED
- finally available: MRST2004QED (QED NLO in DIS scheme) [Martin et al. 2004]
- comparison between PDF with and without QED NLO would become more plausible if QCD part also included

Numerical results

30

relative QED corrections as a function of cutoff parameters:

70th DPG Annual Meeting, March 31 2006

Monika Kollar

guark-antiguark annihilation

Numerical results

relative QED corrections - invariant mass distribution:

Numerical results

relative total QED corrections - invariant mass distribution:

Conclusions & Outlook

- SM 1-loop picture complete

- QED corrections are larger in quark-antiquark annihilation
 ⇒ more important for Tevatron
- need to include QCD corrections to obtain consistent picture and reduce scale dependence
- next step combine QED and QCD