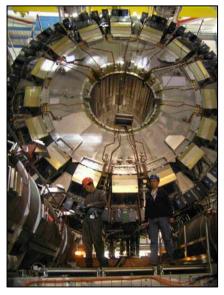
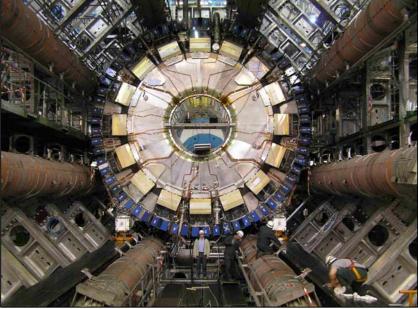
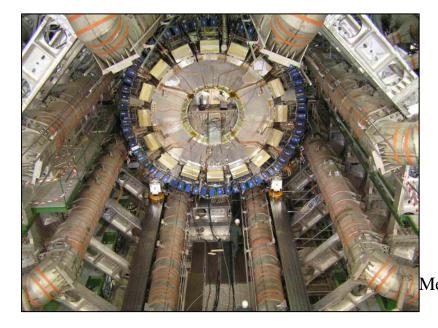
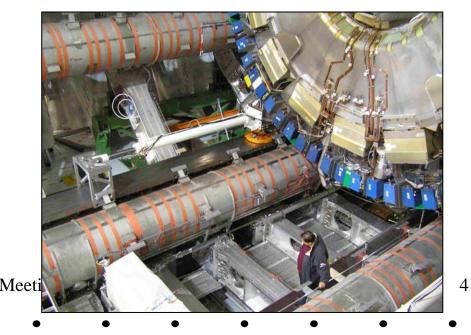

ATLAS-MPI Meeting 13-March-2006


H. Oberlack MPI für Physik, Munich


CONTENT

- Calorimeter Movements
- Electronics production
- LAr Installation and Commissioning at Point 1




• Barrel Calorimeter: Move to IP & Final Alignment

.

LAr BARREL CALORIMETER

- July-04: Cold commissioning of the barrel calorimeter in B180 finished.
- Oct-04: Lowering to the truck position C in the pit. Placement in Tilecal within very few mms.
- Mar-05:

•

Installation of on-detector infrastructure (crates, cooling,...) finished. Start installation of front-end electronics.

• Sep-05:

Move barrel calorimeter to IP position.

Continue installation and commissioning 1 of FE electronics.

Jan-06:

Start of commissioning phase 3 ('expert week')

• 03-Apr-06:

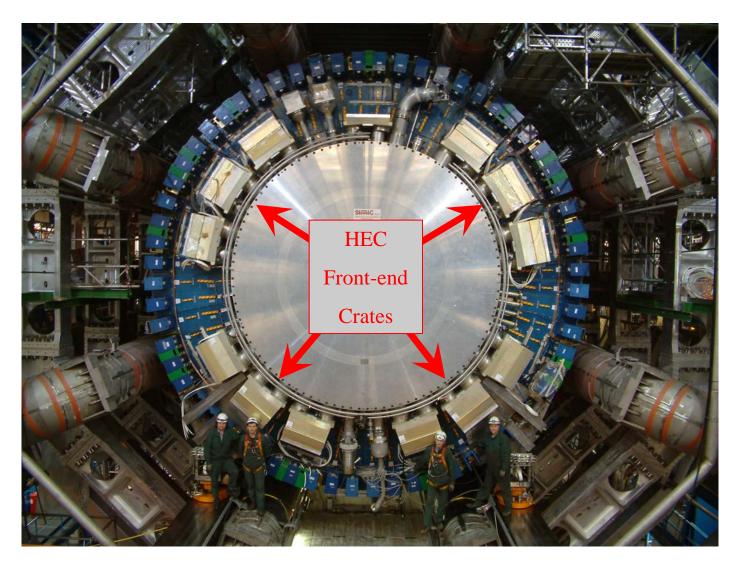
Start of final cool-down (6 weeks).

ATLAS_MPI Meeting 13-March-2006

LAr END-CAP C: Lowering into Pit

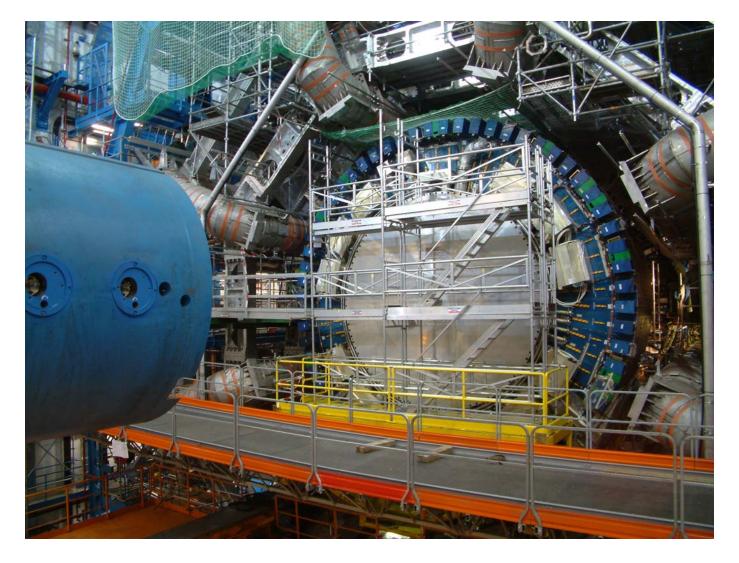
H. Oberlack

ATLAS_MPI Meeting 13-March-2006


Calorimeter End-cap C Frontside

H. Oberlack

ATLAS_MPI Meeting 13-March-2006


Calorimeter End-cap C Backside

H. Oberlack

ATLAS_MPI Meeting 13-March-2006

- •
- •
- •

H. Oberlack

ATLAS_MPI Meeting 13-March-2006

LAr END-CAP C

• Mar-05:

•

Cold commissioning of the ECC calorimeter in B180 finished.

• Dec-05:

Lowering into the truck position in the pit.

Placement in Tilecal within very few mms.

• Feb-06:

Start installation of on-detector infrastructure (crates, cooling, ...).

27-Feb-06:

Move ECC to final 'Detector open position'

- Mar-06: (Tentative date)
 Start installation of front-end electronics.
- May-06: (Tentative date)
 Start of commissioning phase 3 ('expert week')

LAr END-CAP A: Transport to SX1

11

ATLAS_MPI Meeting 13-March-2006

H. Oberlack

LAr END-CAP A in SX1

H. Oberlack

ATLAS_MPI Meeting 13-March-2006

LAr END-CAP A

• Sep-05:

•

Cold commissioning of the ECC calorimeter in B180 finished.

Jan-06:

Transport from B180 to SX1.

18-Apr-06: (Tentative date)

Lowering into the truck position (side A) in the pit. Placement in Tilecal.

Mid-June-06: (Tentative date)

Installation of on-detector infrastructure (crates, cooling, ...).

Junly-06: (Tentative date)
 Start installation of front-end electronics.

LAr Back-End Electronics

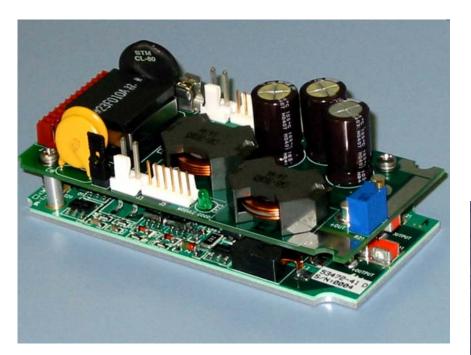
Large amount of work successfully performed in the last few months !

- BE Modules Production Status
 - ROD motherboard production:
 - 164 boards installed and 29 more ready for installation.
 - Start of production of the 2nd series of 21 boards as soon as all components available
 - All except 4 ROD-crates have been delivered
 - All other boards in place or stored at EMF
- BE Electronic installation and commissioning in USA 15 is progressing without special problems
- ROD/ROS being connected.
 - TDAQ decided to unstage the LAr ROS system
- EMF Setup:
 - Full setup with both Back-end and Front-end electronics.
 - 1 ROS PC with 4 Robins.
 - Used to test software and debug hardware, in a very effective way
- A complete hardware setup has been used during the "Expert Week"

•

LAr Front-End Electronics Production

- FEB production has been completed at Nevis
 - FEB production tests are almost completed at Orsay
 - FEB production tests can not be finalized at BNL for preamps shortage
- Production of most other boards is well underway, it should be completed by June '06.
 - CALIB board: Enough for barrel, boards for ECs to come.
 - FEC Controller board: Enough for barrel, boards for ECs to come.
- Main issues


- The shortage of (25 Ohm, 5 mA) preamplifiers that is preventing BNL from completing the FEBs for FCAL and EMEC inner wheel: *→ Recent problem*.
- The lack of "final" LV power supplies
- The continuing problems with the HV power supplies

LV PS Background

- LAr LVPS must meet some challenging spec's, including:
 - Total power ~ 3 kW, distributed over 7 voltage lines
 - Low output ripple, due to stringent coherent noise performance requirement
 - On-detector location, between Tilecal fingers, implies:
 - compact size (i.e. high power density)
 - water-cooling only
 - very high reliability requirements
 - radiation tolerance
- Design is built around DC/DC converter modules, using commercial power MOSFETs which were tested and demonstrated to be radiation-tolerant

– N+1 redundancy scheme requires 27 modules per supply

LV PS Background

ATLAS_MPI Meeting 13-March-2006

LV Power Supplies

- Various problems have been identified in the MDI power supplies:
 - Cap problems \rightarrow solved in October 2005
 - Inductor problems \rightarrow identified and solved in Dec. 2005
 - Issues on the mechanics of the modules \rightarrow recently solved
 - Current Sharing and Stability between modules → solution proposed
- Corrective actions have been suggested by BNL and accepted by MDI
 - LVPS review results in December
 - Need for extra-air cooling → considered a must for long term operations
 - NDA signed by BNL
 - MDI should delivery 4 "final" LVPS next week
 - A schedule for retrofitting existing LVPS has been organized.
 Still an "optimistic" 5pcs/week delivery is taken into account

Recent LV PS Developments

- Vendor (MDI) has started retrofitting of "final" LV PS units
 - Replacing capacitors, inductors, installing Belleville washers
 - Have enough inductors in stock for only 4 LV PS; remaining inductors to be delivered in April
- MDI has so far delivered 3 LVPS with all modifications made
 - Last one was delivered to BNL earlier this week (originally expected mid-Feb.)
- Testing at BNL includes tests of performance and current sharing of individual power modules ("bricks")
 - This is (so far) NOT done at MDI, where individual modules are tested only before final LVPS assembly
 - BNL has found problems with individual modules on ALL 3 LVPS
 - First has +6V module that does not always turn on properly (returned to MDI)
 - Second has +6V module that drops to 5.75 V for 50% load (returned to MDI)
 - Third has -4V modules that drops to -3.75 V for 90% load (still undergoing tests @BNL)
 - Tests of Belleville washers for first 2 LVPS show they are making good contact

Next Steps for LV PS

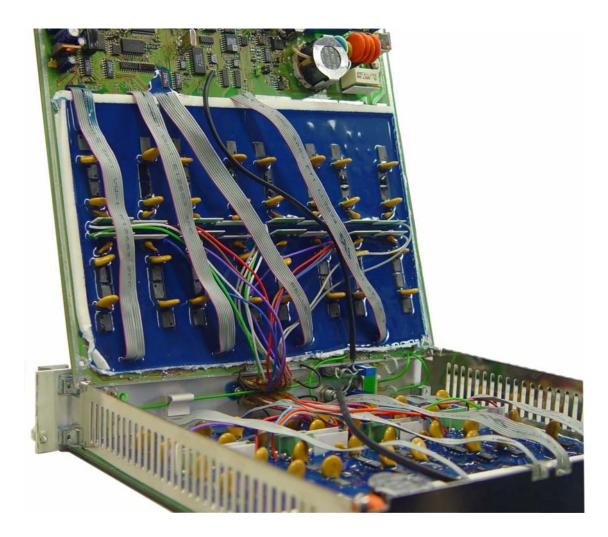
- Follow up with MDI on recent test results and problems to see how to proceed
- Given new problems, BNL is pushing (again) to get MDI to test individual modules in integrated LVPS before shipment to BNL
 - In addition to test station, BNL is providing a technician to perform testing at MDI
 - Individual module testing could be one of this person's tasks
- MDI has agreed to set up 2nd test station to relieve bottleneck in testing
 - BNL is providing all of the equipment and infrastructure
 - Target is to reach situation where goal of 5 LVPS per week is more realistic

H. Oberlack

•

ATLAS_MPI Meeting 13-March-2006

HV PS Background


- HV PS are located in USA15, so no need for radiation-tolerance
- Some features of the LAr HV PS
 - Typical Vmax ~ 2.5 kV
 - 32 channels per dual-width 6U VME module, individually set
 - Need scheme for fast discharge of detector
- After CERN-based tendering process, contract was awarded to ISEG
- Significant operational experience gained during, for example, cold tests of the various detectors in B180
 - A variety of different problems have been discovered
 - By now, had to replace 3 different components (cap, diode, opto-coupler)
 - Continued problems were blamed by ISEG on "dirty" environment and conditions in B180
- More recently, we have started operating modules in USA15
 - A new (leakage current) problem, causing disabled channels to run up in V
 - ISEG has confirmed that they see the same effect

H. Oberlack

•

ATLAS_MPI Meeting 13-March-2006

Potted HV Power Supply

ATLAS_MPI Meeting 13-March-2006

Recent HV PS Developments

- Team including Philippe Farthouat (CERN), H. Braun (Wuppertal), M. Rijssenbeek (Stony Brook), D. Makowiecki (BNL), M. Kobel (Dresden) visited ISEG on Feb. 8
 - With NDA signed, were able to get access to more technical information
- As follow-up of visit, a set of tests and investigations has been performed in Dresden and at CERN
 - A report has been recently circulated to the LAr HV Task Force
 - Results suggest that the leakage currents are NOT coming from the conformal coating or the PCB
 - Instead, problem arises from the use of two voltage regulator circuits in series which, in case of imbalance, can be operated close to or outside their maximum voltage specifications
 - To fix this problem, report suggests changes are needed at the schematic and layout level

•

ATLAS_MPI Meeting 13-March-2006

HV Power Supplies Next Steps

- Transmit recent test report to ISEG
 - Discuss with ISEG their conclusions, proposals how to proceed
- In parallel, we are exploring options with alternate vendors
 - CAEN has given us an informal offer, based on their A3535 module developed for the ATLAS muons
 - Some modifications are needed to satisfy rad'n tolerance requirements of muons (we don't need rad-tol)
 - In meantime, to do some testing and gain some experience, we are borrowing one prototype module from the muons (INFN Milano group is making the necessary arrangements)
 - Some mods (eg. for fast discharge) would have to be developed for LAr

As suggested by Philippe Farthouat, we have initiated contact with Dubna group which developed HV PS for TRT