- •
- •
- •
- •
- •

Calorimetry in Particle Physics

- •
- Lecture I

H. Oberlack MPI für Physik, Munich OUTLINE - 1 -

- I. Overview of Calorimetry
 - 1. Calorimetry in Thermodynamics
 - 2. Nuclear Radiation Detectors
 - 3. Calorimetry in Particle Physics
 - 4. Overview of Detection Mechanisms
 - 5. Making of the ATLAS Lar End-caps
- **II.** Physics of Shower Development
 - 1. Electromagnectic showers
 - 2. Muons traversing dense materials
 - 3. Hadronic showers
 - 4. **Properties of the shower particles**
 - 5. Monte Carlo simulations
- **III. Energy Response of Calorimeters**
 - 1. Homogeneous calorimeters
 - 2. Sampling calorimeters
 - 3. Compensation
 - 4. **Response of Cerenkov calorimeters**

- •
- OUTLINE 2 -

IV. Fluctuations

- 1. Effects of fluctuations on the calorimeter performance
- 2. Signal quantum fluctuations
- **3.** Sampling fluctuations
- 4. Instrumental effects
- 5. Shower leakage
- 6. Fluctuations in visible energy
- 7. Fluctuations in the electromagnetic shower content
- 8. Fluctuations in a compensating calorimeter
- 9. Off-line compensation

V. Instrumental Aspects

- **1.** Construction principles
- 2. Readout of calorimeters based on light detection
- 3. Readout of calorimeters based on charge collection
- 4. Front-end signal electronics
- 5. Trigger processors
- 6. Time structure of the signals
- 7. Operation in a magnetic field
- 8. Radiation hardness

- •
- OUTLINE 3 -

VI. Calibration

- 1. Longitudinally unsegmented systems
- 2. Longitudinally segmented systems
- 3. Consequences of miscalibration
- 4. Offline compensation

VII. Performance of Calorimeter Systems

- **1.** Energy resolution
- 2. Position and angular resolution
- **3.** Time characteristics
- 4. Effects of non-compensation
- 5. Particle identification
- 6. Jets

VIII.Typical Exampels of Calorimeter Systems

- 1. The HERA calorimeters
- 2. The LHC calorimeters
- 3. SuperKamiokande
- 4. Natural calorimeters

- Literature & References
- R.Wigmans: Calorimetry Energy Measurement in Particle Physics, Oxford Science Publications, 1999.
- C.Leroy and P.G.Rancoita, Physics of cascading shower generation and propagation in matter: principles of high-energy, ultrahigh-energy and compensating calorimetry,

Rep. Prog. Phys. 63 (2000) 505 - 606.

 C.W.Fabjan and F.Gianotti, Calorimetry for Particle Physics, CERN-EP/2003-075. •

• Overview → Calorimetry in thermodynamics

- Origin of "Calorimetry" in thermodynamics.
 - Recall experiments done in undergrad labs to determine specific heat of substances.
 - Thermally isolated boxes with substance under study.
 - Measuring device: Thermometer
- Highly sophisticated versions now in use in nuclear labs.
 - Assess amount of fissionable material.
 - E.g. ²³⁹Pu produces heat of 2 mW/g.
 - Determination of amount in non-invasive manner.
- Calorimetry in particle physics:
 - Detection of particles and measurement of their properties
 - Total absorption in a block of matter
 - Determination is destructive, i.e. Particles don't exist after passage of device.
 Exception: Muons.
 - Whole particle energy converted to heat with a tiny, unmeasurable increase in temperature: 1 cal = 10⁷ TeV !

- Overview → Nuclear radiation detectors
- Calor particle detection in nuclear physics started after World war II with advent of scintillation counters.
 - Long known: Ionizing particles cause fluorescence e.g. in ZnS
 - Invention of photomultiplier tube (PMT): Converts individual photons into measurable electrical signals.
 - PMT made quantitative measurements of particle properties possible.
- Typical scintillators:

- Thallium doped sodium iodide crystals {NaI(Tl)} (inorganic crystal)
- Anthracene (organic compound, very bright scintillation, very short decay time)
- Semiconductor crystals (lithium doped Si or Ge, highly improved energy resolution)

Nuclear γ -ray spectrum of decaying uranium nuclei, measured with a bismuth germanium-oxide scintillation counter (upper curve) and with a high-purity germanium crystal (lower curve)

•

• Overview → Calorimetry in particle physics

- Experiments in particle physics classified as
 - Accelerator based
 - Non-accelerator based
- Experimental particle physics studies a wide variety of phenomena at energy scales that span many orders of magnitude.
- Overview of the evolution of the role of calorimeters:
 - Shower counters
 - Instrumented targets
 - 4π detectors

• The life of a particle in a detector

•

- Overview → Scattering experiments at accelerators
- Types of experimental set-ups in scattering experiments at accelerators:
- Fixed target geometry:

- Beam of particles sent onto a target.
- Most energy of the projectile transferred to the target Center of mass energy $E_{cm} = (2 * M * E_{beam})^{0.5}$
- Try to measure the four-vectors of all particles produced.
- Charged particles tracked in magnetic field: Measure momentum and charge
- Mass measurment by ionization density
- Difficulties with electrically neutral particles (n, γ , K⁰, Λ)
- Colliding beam geometry
 - Two beams of particles collide
 - Energy available for particle production in a head-on collision is $E_{cm} = 2 * E_{beam}$
- Experimental aims
 - Try to measure the four-vectors of all particles produced.
 - Charged particles tracked in magnetic field: Measure momentum and charge
 - Mass measurment by ionization density
 - Difficulties with electrically neutral particles $(n, \gamma, K^0, \Lambda)$
 - → Shower counters

•

• Overview → Shower counters → Homogeneous / Sampling

Homogeneous' calorimeters:

- Entire volume sensitive to the particles and contributing to the detector signal.
- Absorbing particles and detecting signals done by the same materials.
- Sampling' calorimeters
 - Function of particle absorption and signal generation by different materials
 - Dubbed 'Passive' and 'Active' materials
 - Passive medium typically high density materials (Fe, Cu, Pb, U)
 - Active medium forms signal through light or charge generation
 - **Properties:**
 - Small fraction of energy deposited in active medium
 - Energy resolution for electromagnetic particles (electrons, photons) worse
 - Relatively cheap, i.e. Suitable for very large detectors.

•

• Overview \rightarrow Shower counters \rightarrow Scintillators

- Long tradition of scintillating crystal calorimetry
 - 'Homogeneous' calorimeters:
- NaI(Tl):
 - First scintillator shower counter in particle physics
 - Photons measured with high efficiency and ~1% resolution
 - The π^0 reconstructed with high efficiency.
 - Disadvantage: hygroscopic
- Other popular scintillating crystals: CsI, BaF₂, CeF₃, BGO, PbWO₄
- Optimization and choice according to
 - Signal speed
 - Radiation hardness
 - Density
 - **Cost**

γγ invariant mass spectrum measured with a CsI crystal spectrometer (KTeV). The two peaks correspond to decaying π^0 and η mesons.

- • Overview → Shower counters → Cerenkov
 - Lead-glass calorimeters
 - 'Homogeneous' calorimeters
 - Composition:
 - Various shapes and forms (e.g. 'Lead-glass wall')
 - Consists of SiO₂ and PbO (up to 70%)
 - Properties:
 - Transparent
 - High density (~ 5 g/cm³)
 - No scintillation, but emits Cerenkov light when particles traverse.
 - Performance:
 - Low light yield (several orders smaller than for scintillating crystals)
 - Energy resolution worse than for scintillating crystals
 - Instantaneous nature of Cerenkov light produces extremely fast signals, much faster than signals from scintillating crystals.

- Overview
 → Instrumented targets
- Fixed target experiments typically have separate targets and an arragement of detectors
 - to determine whether interactions were taking place in the target, and
 - to measure the properties of the reaction products in the case of interesting events.
- Experiments to study 'very rare phenomena'
 - typically combine the functions of target and detector,
 - with usually very large target masses,
 - very large instrumented targets
- Examples:

- Neutrino interactions
- Proton decay
- Cosmic rays at highest energies

•

Overview \rightarrow **Instrumented targets** \rightarrow **Neutrino exp.**

Eamples of neutrino production

- Pion, muon, kaon decays (accelerators)
- Fusion of hydrogen into helium nuclei in the sun
- Supernovae
- Neutrino cross section
 - very low probability of interaction with matter.
 - e.g. mean free path of typical solar v about a lightyear in iron.
 - cross section proportional to neutrino energy, i.e. somewhat better for accelerator v with energies in the 100 GeV range.
 - e.g. Interaction probability in a 1000 ton target is ~1 / 10**9.
 - Need intense beams and large target masses.
- Features of large neutrino experiments at accelerators:
 - Muon spectrometer to identify muons and measure their momenta:
 - Front part of detector defined as fiducial volume of v interactions.
 - Rear part of detector located in magnetic field. Particles there are muons.
 - Hadrons measured by calorimeters:
 - Integration of the signals from the active layers in the fiducial volume. Measure hadronic energy by comparison with signals created by hadrons of known energy (testbeams). Typical precision: 10 %.

- •
- Overview \rightarrow Instrumented targets \rightarrow Neutrino exp.

Large Neutrino experiments at accelerators:

- **•** First generation (1970s) measured nucleon structure and weak interactions
 - WA1 and CHARM at CERN, CCFRR at Fermilab
 - Target mass: ~1000 tons
 - Targets: Iron or marble slabs arranged in large slabs perpendicular to the beam, interleaved plastic or liquid scintillators, wire chambers, drift chambers,
- Later generations (1980/90s) specialised on more detailed aspects of v physics,
 i.e. needed larger and more sophisticated detectors.
 - CHARM II, NOMAD, CHORUS at CERN
- New generation of neutrino experiments ('long baseline experiments') look for v oscillations:
 - Accelerator produced v beam sent in direction of new superb detectors located several hundred or thousand km away. Examples:
 - CERN beam to Gran Sasso (MACRO, OPERA)
 - Fermilab beam to underground mine in Minnesota (MINOS) and to Canada (SNO)
 - KEK beam to SuperKamiokande (K2K, T2K)

- -
- •
- •

The WA1 neutrino detector combination (CERN 1976 – 1984). Large slabs of iron interleaved with layers of plastic scintillator. Rear part of the detector (left side of picture) instrumented with wire chambers for tracking muons. •

Overview → Instrum. targets → Cosmic rays / Proton decay

- Some of the goals of cosmic ray experiments:
 - Production of atmospheric v
 - $\quad \text{Detection of solar } \nu$
 - Detection of v from supernovae
 - Detection of extremely energetic (~10**19) particles entering the Earth atmosphere
- New generation of experiments operational or under construction
 - Need very large instrumented mass with large sampling calorimeters.
 - Typically on high mountain to minimze effect of atmosphere
 - Typically in deep mines, in tunnels under high mountains or deep under water or ice Goal: Minimize background.
- Search for proton decay
 - Limit on partial lifetime for decay to $e + \pi^0$ is so far 10**32 years)
 - Need detector with 10**32 protons (300 m³ water) to observe 1 decay / year.
- Typical detectors: Water Cerenkov calorimeters
 - High purity water viewed by large number of PMTs
 - Observe characteristic blue light emitted during the passage of relativistic charged particles through the water.
 - IMB (Ohio), SuperKamiokande (Japan) use water
 - DUMAND, NESTOR, ANTARES operate under water
 - ICECUBE emersed in ice under South Pole
 - Solar neutrino observatory (SNO) uses heavy water

H. Oberlack

Calorimetry in Particle Physics

.

H. Oberlack

A 10¹⁹ eV Extensive Air Shower

100 billion particles at sea level photons, electrons (99%), muons (1%)

22

• Ground Array stations

H. Oberlack

Schematic view of the SuperKamiokande detector

H. Oberlack

Calorimetry in Particle Physics

- Overview $\rightarrow 4\pi$ Detectors
- Role of the calorimeters becomes more important at higher energies:
 - Information provided by calorimeters improves with increasing energy, while the precision of the momentum measurement of charged tracks decreases.
 - Calorimetric measurement of the four-vectors of particles possiblee due to granularity
 - Calorimetric together with tracking information allows particle identification (e / π)
- Calorimeters become more important in colliding beam geometries
 - Emphasis on measurement of more global event characteristics:
 Energy flow, missing transverse energy, production of jets
- Colliding beam facilities are now dominant source of particles
 - 1970s: e+e- colliders DORIS, SPEAR and pp collider ISR (CERN)
 - Proton Anti-proton SppbarS (CERN): UA1 and UA2 experiments discovered the W and Z intermediate vector bosons looking at signatures like

Energetic charged lepton in combination with missing transverse energy.

- LEAR, LEP, LHC (CERN)
- Tevatron (FNAL)
- PETRA, HERA (DESY)
- PEP, SLC (SLAC)
- TRISTAN and B-factory (KEK)

۲

- Overview $\rightarrow 4\pi$ Detectors
- Experiments at colliding beam facilities
 - e+e- colliders: Calorimetry emphasized measurement of e.m. Particles and properties.
 - **Examples:**

•

- **Crystal Ball (SPEAR)**
- **CUSB and CLEO (CESR)**
- **Crystal Barrel (LEAR)**
- ALEPH, DELPHI, L3, OPAL (LEP)
- **BaBar (SLAC B-factory), BELLE (KEK B-factory)**
- Hadron colliders: Calorimetry emphasis on hermeticity, measurement of energy flow, detection of jets and on electron identification.

Examples:

UA1 and UA2 experiments discovered the W and Z intermediate vector bosons looking at signatures like Energetic charged lepton in combination with missing transverse energy.

ATLAS, CMS (LHC)

- •
- •
- -

UA2 calorimeter at CERN proton - anti-proton collider (1980 – 1986)

H. Oberlack

Calorimetry in Particle Physics

•

- • Overview → Detection Mechanisms
 - Scintillation
 - Cerenkov radiation
 - Ionization
 - Cryogenic phenomena

•

•

•

•

•

27 •

- Overview → Scintillation
- Charged particles traversing matter loose energy by e.m. interaction with Coulomb fields surrounding the charged constituents of matter.
- This energy may be used for
 - ionization (see later),
 - excitation of atoms/molecules (scintillation).
- Excited states are unstable, quick return to the ground state, release of photons.
 - Timescale of this process is not uniquely defined.
 - It depends on excitation energy and number of return paths open.
- Fluorescence / scintillation:
 - The emitted photons are in the visible domain.
 - Typical timescales range from micro- to picosec. Decay times of typical scintillators like BGO are several hundred nsec.
- Major inventions:
 - PMT (discussed before). New developments like Avalanche Photo Diode (APD) take care of PMT weaknesses (e.g. Magnetic field).
 - Wavelength shifters:
 - Absorb scintillation light and re-emit at a longer wavelength.
 - Advantage for hermetic calorimeters: Scintillation light can be wavelengthshifted and at the same time redirected towards rear end of calorimeter.
 - Price: Loss of light.

Examples of Calorimeter Read-out Schemes

- Overview → Scintillation
- Orientation of active layers:

- No need to orient them perpendicular to direction of incoming particle.
- Different new geometries invented:
 - Parallel to beam direction
 - Accordion shape
 - Tile etc
- Plastic optical fibers:
 - Consist of a polystyrene core (n-1.59)
 - Surrounded by one or several layers of cladding with lower values of n.
- Fibers used in particle physics are both source of the light and medium of transport to place where conversion to electrical signal can happen.
- Advantages of such optical fibers:
 - Possibility for perfectly hermetic calorimeter structure.
 - Very high sampling frequency may be obtained, leading to good energy and position resolution.
 - High signal speed
 - Fine granularity possible.

- Overview → Cerenkov radiation
- A charged particle travelling faster than the speed of light in a certain medium (v > c / n, n index of refraction)
 - loses energy by emitting Cerenkov radiation.
 - Radiation emitted at Cerenkov angle $\theta_{c} = \arccos(1 / n * \beta)$ vs. Particle direction Half cone with half-opening angle θ_{c} .
 - Visble part of the Cerenkov radiation seen as blue light.
- Emission of Cerenkov light contributes very little to energy loss of particles.
 - Charged particle with $\beta \sim 1$ looses in water 0.4 keV/cm. Ionization loss: 2100 keV/cm.
- Cerenkov effect sensitive to velocity of particles:
 - Mass determination for particles of which the momentum has been determined.
 - Useful to separate electrons, pions, kaons, protons, deuterons from each other.
 - Realized for various devices: Threshold, differential, ring imaging Cerenkov counters.
- Cerenkov light is instantaneous:
 - Used for experiments in which ultimate signal speed is required.

• Overview \rightarrow Ionization

۲

- Charged particles traversing matter may ionize the atoms of this matter:
 - Electrons are released from their Coulomb field leaving behind ionized atoms.
 - Collection of liberated electrons is signal producing technique in various detectors
 - Electrons may or may not be amplified.
- Ionization chambers based on liquid media:
 - No amplification.
 - An electric field apllied over the liquid gap separates electrons and ions.
 - Electrons collected at Anode, ions at cathode.
 - Mean free path of electrons should be long, therefore use noble liquids where all electron shells are filled, no capture of electrons.
 - Very stringent purity standards. Contamination by electro-negative substances have to be kept below 1 ppm level.
- Calorimeters based on noble liquids:
 - Pioneered with liquid argon (LAr).
 - LAr cheap, available in large quantities, purity levels can easily be maintained.
- Examples of operating LAr calorimeters:
 - D0 at Tevatron (FNAL)
 - H1 at HERA (DESY)
 - ICARUS (homogeneous LAr calorimeter) Gran Sasso

- Overview \rightarrow Ionization
- Other noble liquids:

•

- Krypton (LKr) and xenon (LXe) much more expensive
- Special advantages like higher density or higher Zvalue.
- LXe is very good scintillator
- Noble liquids are very radiation hard

• Overview \rightarrow Ionization

۲

- Ionization calorimeters with gaseous media:
 - Electrons undergo considerable multiplication resulting in an avalanche.
 - Multiplication process works best in the vicinity of the anode.
 Anode often made of very thin wires (30 μm).
- Wire chambers operate in variety of modes:
 - Depends on gas mixture and voltage applied across gap
 - Proportional mode, streamer mode, Geiger mode, ...
 - Time needed for charge to arrive at anode provide information about spatial coordinates of particle. Principle of drift chambers.
 - Large number of calorimeter systems rely on wire chambers.
- Solid state devices measure ionization charge:
 - Semiconductor crystals (Si, Ge and GaAs) used as particle detectors
 - Outer shell atomic levels exhibit band structure: valence band and conduction band separated by an energy gap.
 - Ionizing particle excites electrons from valence into conduction band, leaving hole in valence band.
 - Electron-hole pairs collected by an electric field.
 - Very little energy is required to produce electron-hole pair (3.6 eV in Si, 46 eV in LAr)

- Overview \rightarrow Cryogenic phenomena
- Highly specialized calorimetric detectors study phenomena at boundary of particle physics and astrophysics. Need precise measurements of small energy deposits. Exploit phenomena at very low temperatures:
 - Dark matter
 - Solar neutrinos
 - Magnetic monopoles
- Phenomena:

- Cooper pairs are broken by phonon absorption
- Specific heat for dielectric crystals and for superconductors decreases to very small values at very low temperatures.
- Some materials change properties (e.g. magnetization), thereby provide detector signals.
- Mostly R&D efforts:
 - Bolometers
 - Superconducting tunnel junctions
 - Superheated superconducting granules

- Overview \rightarrow Cryogenic phenomena
- Highly specialized calorimetric detectors study phenomena at boundary of particle physics and astrophysics. Need precise measurements of small energy deposits. Exploit phenomena at very low temperatures:
 - Dark matter
 - Solar neutrinos
 - Magnetic monopoles
- Phenomena:

- Cooper pairs are broken by phonon absorption
- Specific heat for dielectric crystals and for superconductors decreases to very small values at very low temperatures.
- Some materials change properties (e.g. magnetization), thereby provide detector signals.
- Mostly R&D efforts:
 - Bolometers
 - Superconducting tunnel junctions
 - Superheated superconducting granules

- **ATLAS End-Cap Calorimeter**
- ATLAS and CMS are the two general purpose experiments at the LHC
- **The ATLAS Calorimeter consists of one Barrel and two end-cap calorimeters.**
- Each calorimeter is made of an inner shell of LAr calorimetry and an outer shell of tile calorimetry.
- More detailed discussion later.
- Here some pictures of the LAr end-caps.
- Each LAr end-cap cryostat houses three different calorimeter types:
 - An e.m. calorimeter wheel (EMEC) with a presampler in front,
 - Two hadronic calorimeter wheels (HEC)
 - A forwad calorimeter (FCAL)

H. Oberlack

A single LAr HEC Module

)

A HEC Wheel partially assembled

H. Ob

H. Oberlack

HEC Wheel fully assembled, before rotation

• HEC Wheel rotated and inserted into the cryostat

ATLAS LAr END-CAP Integration

H. Oberlack

Calorimetry in Particle Physics

• ATLAS LAr END-CAP Final Integration

FCAL A insertion

45

LAr End-Cap A before closure

H. Oberlack

Calorimetry in Particle Physics

•

Temperature (K)

.

ATLAS LAr END-CAP Cool-down / Warm-up

End-Cap C Temperature Variation from Cool-down to Warm-up

H. Oberlack

ATLAS LAR END-CAP Transport to Point 1

Calorimetry in Particle Physics 47

• ATLAS LAr END-CAP in Surface Building

Calorimetry in Particle Physics

48

H. Oberlack

• ATLAS LAr END-CAP Lowering into Pit

Calorimetry in Particle Physics

49

H. Oberlack

ATLAS END-CAP Calorimeter Frontside

ATLAS END-CAP Calorimeter Backside

