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I. Overview of Calorimetry
1. Calorimetry in Thermodynamics
2. Nuclear Radiation Detectors
3. Calorimetry in Particle Physics
4. Overview of Detection Mechanisms
5. Making of the ATLAS Lar End-caps

II. Physics of Shower Development
1. Electromagnectic showers
2. Muons traversing dense materials
3. Hadronic showers
4. Properties of the shower particles
5. Monte Carlo simulations

III. Energy Response of Calorimeters
1. Homogeneous calorimeters
2. Sampling calorimeters
3. Compensation
4. Response of Cerenkov calorimeters
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II.1  Physics of Shower Development II.1  Physics of Shower Development E.m. ShowersE.m. Showers

1. Energy loss by charged particles

2. Photon interactions
a. Photoelectric effect
b. Rayleigh scattering
c. Compton scattering
d. Pair production
e. Photonuclear reactions

3. Electromagnetic cascades

4. Scaling variables
a. Radiation length
b. Molière radius 

5. Electromagnetic shower profiles

6. Shower containment
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II.1.1  II.1.1  E.m. ShowersE.m. Showers Energy loss by charged particlesEnergy loss by charged particles
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Cross sections (left) and fractional energy losses (right) through which the particles of e.m.
showers lose their energy, in various absorber materials (carbon, iron, uranium). 

II.1.1  II.1.1  E.m. ShowersE.m. Showers Energy loss by charged particlesEnergy loss by charged particles
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II.1.1  II.1.1  E.m. ShowersE.m. Showers Energy loss by charged particlesEnergy loss by charged particles
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Energy losses through ionization and bremsstrahlung by electrons in copper. 
Arrows indicate the values for the critical energy.

II.1.1  II.1.1  E.m. ShowersE.m. Showers Energy loss by charged particlesEnergy loss by charged particles
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II.1.2  II.1.2  E.m. ShowersE.m. Showers Photon interactions Photon interactions 

a. Photoelectric effect
b. Rayleigh scattering
c. Compton scattering
d. Pair production
e. Photonuclear reactions
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II.1.1  II.1.1  E.m. ShowersE.m. Showers Energy loss by charged particlesEnergy loss by charged particles
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II.1.2  Photon interactionsII.1.2  Photon interactions
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Cross section for the photoelectric effect as function of the Z value of the absorber for 100 keV
and 1 MeV photons.

II.1.2  Photon interactions II.1.2  Photon interactions Photoelectric effectPhotoelectric effect
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II.1.2  Photon interactions II.1.2  Photon interactions Compton Compton scatteringscattering

Compton scattering process
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II.1.2  Photon interactions II.1.2  Photon interactions Compton Compton scatteringscattering



H. Oberlack                                          Calorimetry in Particle Physics, Part II 15

Cross section for Compton scattering as function of the scattering angle of the photon (a) and
angular distribution of the Compton recoil electrons (b), for incident photons of different
energies.

II.1.2  Photon interactions II.1.2  Photon interactions Compton Compton scatteringscattering
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Cross section as function of the Z value of the absorber for 100 keV and 1 MeV photons.

II.1.2  Photon interactions II.1.2  Photon interactions Compton Compton scatteringscattering
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II.1.2  Photon interactions II.1.2  Photon interactions Pair productionPair production
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Energy domains in which photoelectric effect, Compton scattering and pair production are the
most likely processes, as function of the Z value of the absorber material. 

II.1.2  Photon interactionsII.1.2  Photon interactions
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II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades
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The longitudinal (depth) development of an electromagnetic shower
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II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades
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II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades
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Energy deposit as function of depth for electron showers of different energy developing in a
block of copper. Integrals of the curves are normalized to the same value.

II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades
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Depth Development of Electromagnetic Showers
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Number of positrons generated in e.m. shower development and fraction of total energy
deposited by these particles.

II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades
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II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades

Composition of e.m. showers.

Shown are (%) of the energy of 10 GeV
e.m. showers deposited through shower
particles with energies <1 MeV (dashed),
<4 MeV (dash-dotted) or >20 MeV (solid)
as funtion of Z value of absorber material.
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II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades
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II.1.3  Electromagnetic cascadesII.1.3  Electromagnetic cascades

Comparison of longitudinal (a) and lateral (b) profiles of the energy deposited by electrons and
positrons in 10 GeV e.m. showers in Pb. 
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II.1.4  Scaling variablesII.1.4  Scaling variables
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Energy deposit as a function of depth, for 10 GeV electron showers developing in Pb, Fe, Al.
Show approximate scaling of longitudinal shower profile when expressed in X0.

II.1.5  Electromagnetic shower profilesII.1.5  Electromagnetic shower profiles
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Radial energy deposit profiles for 10 GeV electrons showering in Al, Fe and Pb.

II.1.5  Electromagnetic shower profilesII.1.5  Electromagnetic shower profiles
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Mean free path (Molière radius ρM) for photons with energies 1 – 3 MeV, as function of Z. 

II.1.5  Electromagnetic shower profilesII.1.5  Electromagnetic shower profiles
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Average energy fraction contained in a block of matter with infinite transverse dimensions, as
function of thickness of absorber. 
(a) Results for electron showers of various energies in Cu.
(b) Results for 100 GeV electrons in different absorber materials. 

II.1.6  Shower containmentII.1.6  Shower containment
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Average energy fraction contained in an infinitely long cylinder of absorber material as
function of cylinder radius.

II.1.6  Shower containment II.1.6  Shower containment 
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II.2  Physics of Shower Development II.2  Physics of Shower Development Muons traversing dense matterMuons traversing dense matter

Signal distribution for muons of different
energies traversing at 30 incidence angle the
9.5 λint deep SPACAL detector.
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II.3  Physics of Shower Development II.3  Physics of Shower Development Hadronic showersHadronic showers

1. Particle sector
a. E.m. decaying particles
b. Ionization losses by charged hadrons
c. Particle multiplicities in hadron showers
d. Asymptotic consequences

2. Nuclear sector
a. Nuclear spallation reactions
b. Nuclear binding energy
c. Spallation nucleons
d. Evaporation neutrons

3. Interactions of neutrons with matter
a. Elastic neutron scattering
b. Neutron capture
c. Production of α particles
d. Ineleastic neutron scattering
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II.3  Physics of Shower Development II.3  Physics of Shower Development Hadronic showersHadronic showers

4. Hadronic shower profiles
a. Nuclear interaction length
b. Longitudinal profiles
c. Lateral / radial profiles
d. Fluctuations
e. Shower profiles in Cherenkov calorimeters

5. Shower containment
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II.3  Physics of Shower Development II.3  Physics of Shower Development Hadronic showersHadronic showers
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Average e.m. shower fraction, measured with SPACAL and compared to predictions.  

II.3.1  Particle sector II.3.1  Particle sector E.m. decaying particlesE.m. decaying particles
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π/e signal measured with QFCAL calorimeter. Dashed curve: fem fraction in the pion induced
showers. Solid curve: π/e signal ratio derived from this.

II.3.1  Particle sector II.3.1  Particle sector E.m. decaying particlesE.m. decaying particles



H. Oberlack                                          Calorimetry in Particle Physics, Part II 41

Experimental measurements of fem of pion induced showers in QFCAL (Cu based) and
SPACAL (Pb based).

II.3.1  Particle sector II.3.1  Particle sector E.m. decaying particlesE.m. decaying particles
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II.3.1  Particle sector II.3.1  Particle sector E.m. decaying particlesE.m. decaying particles

QFCAL calorimeter response to p and π
mesons, and ratio of these, as function of
energy.  
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Ionization energy loss of minimum ionizing hadrons in various absorber materials.

II.3.1  Particle sector II.3.1  Particle sector Ionization losses by charged hadronsIonization losses by charged hadrons
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Characteristics of particle production in pion induced showers in Cu (Pb).

II.3.1  Particle sector II.3.1  Particle sector Multiplicities in hadron showersMultiplicities in hadron showers
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Average fraction of the initial energy carried by the e.m. shower component, as function of the
initial energy.

II.3.1  Particle sector II.3.1  Particle sector Asymptotic consequencesAsymptotic consequences
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Cross section for nuclides produced by spallation of 238U induced by 2 GeV hadron. The final
state nuclide is defined by the number of protons (ΔZ) and neutrons (ΔN) released from the
target nucleus.

II.3.2  Nuclear sector II.3.2  Nuclear sector Nuclear spallation reactionsNuclear spallation reactions
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A proton-nucleus interaction in a nuclear emulsion stack.

II.3.2  Nuclear sector II.3.2  Nuclear sector Nuclear binding energyNuclear binding energy
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Distribution of the number of protons and neutrons produced in spallation reactions induced
by 1.05 GeV pions on Pb and by 0.55 GeV pions on Fe.

II.3.2  Nuclear sector II.3.2  Nuclear sector Spallation nucleonsSpallation nucleons
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E number of protons and neutrons produced in spallation reactions on Pb and Fe as function
of the energy of incoming hadrons.

II.3.2  Nuclear sector II.3.2  Nuclear sector Spallation nucleonsSpallation nucleons
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Destination of the 1.3 GeV total energy carried by an average pion produced in hadronic
shower development in Pb. 

II.3.2  Nuclear sector II.3.2  Nuclear sector Spallation nucleonsSpallation nucleons
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II.3.2  Nuclear sector II.3.2  Nuclear sector Spallation nucleonsSpallation nucleons

Energy deposit and composition of the non
e.m. component of hadronic showers in Pb
and Fe. 
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Where does the energy carried by the non-e.m. component of hadronic showers go?

II.3.2  Nuclear sector II.3.2  Nuclear sector Spallation nucleonsSpallation nucleons
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Kinetic energy spectrum of evaporation neutrons, produced according to Maxwell
distributions with temperatures of 2 MeV and 3 MeV respectively.

II.3.2  Nuclear sector II.3.2  Nuclear sector Evaporation neutronsEvaporation neutrons
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Distribution of the total kinetic energy carried by 100 and 1000 evaporation neutrons.

II.3.2  Nuclear sector II.3.2  Nuclear sector Evaporation neutronsEvaporation neutrons
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II.3.3  n interactions with matterII.3.3  n interactions with matter

a. Elastic n scattering

b. n capture

c. Production of α particles

d. Inelastic n scattering
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II.3.4  Hadronic shower profiles II.3.4  Hadronic shower profiles Nuclear interaction lengthNuclear interaction length
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II.3.4 Hadronic shower profiles II.3.4 Hadronic shower profiles An ExperimentAn Experiment
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Longitudinal shower profile for 300 GeV π- interactions in a block of U, measured from the
induced  radioactivity.

II.3.4 Hadronic shower profiles II.3.4 Hadronic shower profiles Longitudinal profilesLongitudinal profiles
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Average lateral profile of the energy deposited by 80 GeV π- showering in the SPACAL detector. 

II.3.4 Hadronic shower profiles II.3.4 Hadronic shower profiles Lateral / radial profilesLateral / radial profiles
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Lateral profiles for pion induced showers, measured at different depths, with the ZEUS
calorimeter.

II.3.4 Hadronic shower profiles II.3.4 Hadronic shower profiles Lateral / radial profilesLateral / radial profiles
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Lateral profiles for 300 GeV π- interactions in a block of U, measured from the induced
radioactivity at a depth  of 4 λint inside the block.

II.3.4 Hadronic shower profiles II.3.4 Hadronic shower profiles Lateral / radial profilesLateral / radial profiles
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Comparison of transverse characteristics of 80 GeV π- showers measured with a scintillation
calorimeter and with a Cherenkov calorimeter. 

II.3.4 Hadronic shower profiles II.3.4 Hadronic shower profiles Profiles in Cherenkov cal.Profiles in Cherenkov cal.
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II.3.5 Shower containmentII.3.5 Shower containment

Average energy fraction contained in ablock of matter with infinite transverse dimensions, as
function of the thickness of this absorber, expressed in λint .
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Average energy fraction contained in an infinitely long cylinder of absorber material, as
function of the radius of this cylinder (expressed in λint) for pions of different energy
showering in Pb.

II.3.5 Shower containmentII.3.5 Shower containment
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II.4  Physics of Shower Development II.4  Physics of Shower Development Shower Particle PropertiesShower Particle Properties
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II.4  Physics of Shower Development II.4  Physics of Shower Development Shower Particle PropertiesShower Particle Properties
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Average range of electrons in various absorber materials as function of energy.

II.4  Physics of Shower Development II.4  Physics of Shower Development Shower Particle PropertiesShower Particle Properties
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Average range of protons in various absorber materials as function of energy.

II.4  Physics of Shower Development II.4  Physics of Shower Development Shower Particle PropertiesShower Particle Properties
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II.5  Physics of Shower Development II.5  Physics of Shower Development M.C. SimulationsM.C. Simulations

1. Electromagnetic showers

Detailed models exist (e.g. EGS4 code, GEANT)

2. Hadron showers

Analytical models for hadron showers do not exist
MC models used to simulate showers
Many approximations necessary

Nuclear physics
Particle spectra produced
Neutron transport

Only approximate description of reality possible
Example code: GEANT4
Very time consuming calculations
Use parametrizations of energy depositions in shower (e.g. GFLASH)
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II.5.1 II.5.1 M.C. Simulations M.C. Simulations Electromagnetic showersElectromagnetic showers

Effects of cut-off energy in EGS4 shower simulations. Shown are the average signals from 10 
GeV electron showers in SPACAL. 

a) Calculations for different values of the energy to which electrons and photons are tracked
b) Computer time needed for simulation of 1000 events as function of cut-off energy.
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Energy fraction lost to bremsstrahlung by low-energy shower electrons in SPACAL.
a) Probability that low-energy photons interact through photoelectric effect in the absorber
b) Range of the photoelectrons produced as function of energy.

II.5.1 II.5.1 M.C. Simulations M.C. Simulations Electromagnetic showersElectromagnetic showers


