b-tagging in Top Physics

Grant Gorfine

(Wuppertal)

- Motivation
- · Interests in b-tagging topics
- Progress in b-tag calibration

Motivation

- Building pixel detector → natural topic is b-tagging
- Improvements in b-tagging and calibration and understanding the behaviour of btagging in top events -> Improvements in top measurements and understanding of systematics.
- Top events can be used to calibrate btagging and possibly charm tagging and light jet rejection. Important in commission phase as well as later.

B-tagging Interests of Wuppertal Group

Aim: Improvements to both b-tagging and top analysis

- Calibration of tag efficiency and rejection using ttbar (Grant Gorfine)
- Optimization of selection
- Jet algorithms assignment of tracks to jet (Marisa Sandhoff)
 - Comparison b/n Kt and cone algorithms
- Vertexing (Tatjana Lenz)
- Tracking (Sebastian Fleischmann)
- Charm tagging (Sebastian Reuschel)
- Use of flavour tag weights in kinematic fit. Improvements of fit.
 - Repeat and extend what was done in $D\emptyset$.
- Influence of detector realism eg misalignment (Grant Gorfine)

B-tagging calibration

- Jet counting
 - Compare 0, 1, 2 tagged b-jets.
 - · Expect two and only 2 b-jets.
 - If one can select sample of events that have high fraction of true ttbar then efficiency based on counting tagged jets is less sensitive to wrong jet combinations.
- "b-jet" sample
 - Selection to get high purity b-jet sample (eg by tight cuts on top mass) \rightarrow can then look at b-tag weight distribution
 - No b-tagging or
 - Use b-tagging on one side only (eg lepton side) and measure b-tag weight of b-jet from other side (eg hadronic side).

Light Jet and charm jet calibration

- Can possibly extract information from jet counting.
 - Only expect two b-jets → Presence of three jets tagged as b-jets gives information on mistag rate from light jet and/or charm jet.
- · Use W's from ttbar to look at light jet and charm jet weights.

Progress so far

- Just starting results preliminary
- Looked at ttbar events, no background
 - CSC T1 sample semileptonic ttbar events using MC@NLO.
 - ~10k events
- Looked at jets in b-tag collection
 - Cone4 jets by default
- · Checked tagging efficiencies
- Jet counting (comparison of 0,1,2 tagged b-jets)
- Looked at truth info to select events.

Tag Efficiency

T1 sample - ttbar

Jet Counting

Unfilled histogram

number of jets tagged as b-jet (weight > weightCut, weightCut = 5 here)

Red histogram

- number of jets tagged as b-jet AND labeled as true b-jet.
- Discrepancy mostly due to charm jets

Jet Counting ...

- Jet counting (0,1,2 tagged jets)
 - $\in = \in_b \times \in_{jet \text{ reconstructed}}$ and selected = Efficiency of b from top being reconstructed and tagged.
 - Assuming high rejection and only 2 true b-jets

```
Prob (2 bjet) = \epsilon^2 = n_2 / n_{tot}
Prob (1 bjet) = 2\epsilon(1-\epsilon) = n_1 / n_{tot}
Prob (0 bjet) = (1-\epsilon)^2 = n_0 / n_{tot}
```

We get various expressions for ϵ , eg

$$\epsilon = 1/(1+n_1/2n_2)$$
 (Eqn 1)
 $\epsilon = 1/(1+2n_0/n_1)$ (Eqn 2)

Jet Counting ...

- No event selection,
- Jet $p_T > 15 GeV$, $|\eta| < 2.5$
 - Standard cuts used when quoting b -tag efficiencies
- No background

$$\varepsilon = 1/(1+n_1/2n_2)$$
 (Eqn 1)
 $\varepsilon = 1/(1+2n_0/n_1)$ (Eqn 2)

Weight	ϵ_{b}	(Eqn 1)	(Eqn 2)
0	0.791 ± 0.003	0.680 ± 0.007	0.621 ± 0.013
5	0.618 ± 0.004	0.515 ± 0.012	0.481 ± 0.013
10	0.445 ± 0.004	0.363 ± 0.020	0.347 ± 0.014

→ Differences due to not all b-jets being reconstructed and selected, overlapping jets, ...

Jet Counting ...

- Select "good" ttbar events using truth
 - Both b quarks from top are close to a reconstructed jet (deltaR < 0.3)
 - Unambiguous association no other quarks from ttbar nearby (deltaR > 0.7) avoid merged jets

Weight	€ _b *	(Eqn 1)	(Eqn 2)
0	0.791 ± 0.004	0.774 ± 0.007	0.707 ± 0.018
5	0.618 ± 0.005	0.606 ± 0.012	0.561 ± 0.017
10	0.444 ± 0.005	0.433 ± 0.020	0.412 ± 0.018

^{* €} calculated using only b's from top

→ With good event selection expect to be able to extract b-jet efficiency. Not dependent on wrong jet combinations.

Next steps

- Next steps
 - Understand remaining discrepancies and influence of light quark and charm quark on these ratios.
 - Repeat with some realistic ttbar analysis and work on event selection
 - Using kinematic fit from DØ.
 - Look at backgrounds
 - Can benefit from jet algorithm work being done in group → better jet assignments.

Summary

- Interests
 - Calibration, selection, jet algorithms, vertexing, tracking, charm-tagging, kinematic fitting.
- Started with investigating tagged jet counting in ttbar events.
 - Results so far are encouraging

