Branching Ratio Of Fully Leptonic To Semi Leptonic tt Decays

Raphael Mameghani LMU Munich

- semi leptonic and dileptonic decays
- why a measurement of the ratio?
- early results in the semi leptonic channel
- topological variables
- outlook

Advantage Of A Ratio Measurement

compensate:

• experimental uncertainties, e.g.

luminosity (as $N = \sigma \cdot \int \mathcal{L} dt$)

energy and momentum scale uncertainties

(might affect counting efficiencies)

Branching Ratio Full Leptonic / Semi Leptonic

discrepancies due to rare top decays, e.g.

 $\begin{array}{rcl}t&\to&H^++b\\&&H^+\to\,\tau\nu,\,c\bar{s}\end{array}$

deficit of electrons and muons

stat. precision @ 1 year with $\int \mathcal{L} dt = 10 \text{ fb}^{-1}$: $\Delta R_{ee/e} / R_{ee/e} (\text{stat.}) \approx 0,5\%$ (source:TDR)

cuts: $p_T(\ell) > 20 \text{GeV}, \quad \not \!\!\! E_T > 20 \text{GeV},$

min. 2 b-jets with $p_T > 20$ GeV

But now we want to do it with <u>full simulation</u> (& <u>without b-tagging</u>)!

Signal MCs Rome production: semi leptonic: 4520.ttbarWm, 4521.ttbarWp fully leptonic: 4522.ttbar_lep (official?) (/castor/cern.ch/user/r/resende/dilep/rome.004522.aod.ttbarWm_lep._00*.pool.root)

Background MCs		
	Rome MCs:	not available:
semi lept.:	W + 4jets	W + n jets (later in CSC) QCD n jets (statistics!)
all lept.:	Z + jets WW, ZW, ZZ	

P^T distributions with **P**^T cut only

W + n jets not complete & no QCD background

Frequencies in the Semi Leptonic Channel

electrons with $P_T > 30$ GeV (similar for muons)

jets with $P_T > 20$ GeV (kT-algorithm)

 take events with exactly 1 high energetic lepton (e, μ) and 3 – 7 high energetic jets

Lepton Isolation

From D0 experience: $\Delta R > 0.4$ cut reduces QCD background

Transversal W Mass

 M_T from leading lepton (e, μ) and missing E_T :

without ΔR cut

with min. $\Delta R(Lept., Jet) > 0.4$ cut

Application Of The Cuts

Example: missing transversal energy (expected from neutrinos)

With Some Reducible Backgrounds

D0 experience: only W + jets & QCD relevant in the end

Topological Variables

Topological Variables

Outlook / Next Steps

- continue semileptonic and start fully leptonic channel
- complete the backgrounds (W + n jets, QCD)

what about QCD? ATLFAST, generator level only?

