Status of Top Quark Physics at Dortmund

Reiner Klingenberg
University of Dortmund

ATLAS-D top, MPI Munich, 18-19 May 2006
Status of top quark physics at Dortmund

Overview

• Our group

• What we did so far

• How to continue
Our group

• our present top physics group, some of them are just starting

 • Moritz Bunse (diploma student)
 Daniel Dobos (PhD student)
 Claus Gößling
 Reiner Klingenberg
 Ingo Reisinger (PhD student)
 Jörg Walbersloh (PhD student)

• we will hire a post-doc on analysis by autumn of 2006
Our group

• we have a strong background in the pixel detector of the ATLAS experiment

• we have a study on spatial resolution improvements in the pixel detector;

 it is part of the tool development for tracking and b-tagging which is especially useful for top physics
What we did so far

- improvements of the track fitting

- first look at ATLAS DC2 (data challenge) ntuples regarding top-anti-top production and their decay in the (semi-)leptonic channel

- analysis in the ATHENA ATLAS s/w environment using AODs (analysed object data)
Aim of ‘our’ tracking study

- so far ATHENA (10.4.0), the ATLAS reconstruction/analysis frame did not use the full information provided by the inner detectors, i.e. the charge information from the individual cells of the pixel detector

- but detector provides ‘analogue’ to improve on the spatial resolution of tracks and the vertex/secondary vertex determination
Aim of ‘our’ tracking study

- so far ATHENA (10.4.0), the ATLAS reconstruction/analysis frame did not use the full information provided by the inner detectors, i.e. the charge information from the individual cells of the pixel detector

- but detector provides ‘analogue’ to improve on the spatial resolution of tracks and the vertex/secondary vertex determination

- Improvements ~10%
 - first version is part of ATHENA 11.0.1

Reiner Klingenberg

I. Reisinger, Dortmund in collaboration w/ T. Lari, Milano
First look at ATLAS DC2 ntuples

- we become familiar with simulation data available from the ATLAS data challenge 2 (DC2) in respect to top quark production and decay
- had some first look at the samples including full- and semi-leptonic top-anti-top decays
- reconstruction of invariant masses of top and W-boson; a rudimentary study of angular correlations between jets, leptons
- data and useful analysis skeleton from NIKHEF and some additional coding for our own learning phase
Example: leptonic and hadronic top reconstruction

- Reconstruction of the ‘leptonic’ top: transverse invariant mass of neutrino + ch. lepton + 4th jet
- Reconstruction of the ‘hadronic’ top: highest vectorial transverse momentum sum of 3 out of 4 jets
Example: leptonic and hadronic top reconstruction

- reconstruction of the ‘leptonic’ top: transverse invariant mass of neutrino + ch. lepton + 4th jet

- reconstruction of the ‘hadronic’ top: highest vectorial transverse momentum sum of 3 out of 4 jets
Example: reconstruction of the W boson

- choose jet combination of smallest angle, reconstruct invariant mass, get mostly W boson
Example: reconstruction of the W boson

- choose jet combination of smallest angle, reconstruct invariant mass, get mostly W boson
Example: reconstruction of the W boson

- choose jet combination of smallest angle, reconstruct invariant mass, get mostly W boson
next step

- using ATHENA as the ATLAS simulation / reconstruction / analysis framework
Setting up the ATHENA environment

- started with local computer environment
 reused Duron + Pentium IV (32bit), Scientific Linux CERN 3.0.6
 and Sempron (64bit), SLC3 & SuSE10
Setting up the ATHENA environment

- started with local computer environment
 reused Duron + Pentium IV (32bit), Scientific Linux CERN 3.0.6
 and Sempron (64bit), SLC3 & SuSE10

- recently, dual Opteron 64bit, SLC3 (32bit)
 want to enlarge to a (small) local cluster \textit{(later Tier3?)}
Setting up the ATHENA environment

- started with local computer environment
 reused Duron + Pentium IV (32bit), Scientific Linux CERN 3.0.6
 and Sempron (64bit), SLC3 & SuSE10

- recently, dual Opteron 64bit, SLC3 (32bit)
 want to enlarge to a (small) local cluster (*later Tier3?*)

- Computer Division of the University:
 Linux Cluster w/ 224 nodes / 464 CPUs, 64bit, SuSE10
 cluster not fully in operation yet, no ATHENA installation yet (*later Tier3?*)
Setting up the ATHENA environment

- Installation of ATLAS s/w framework ATHENA 11.0.42
- Tutorials
- Create an analysis environment for first studies with AODs
A word on our tutorials

- two interactive ATHENA tutorials organised within our groups to learn
 - structure and philosophy of the ATHENA framework
 - ATHENA terminology (Algorithms, Tools, Data Objects, Transient Data Store, Services, Data Converters, Properties ...)
 - the ATHENA full chain of data processing
 - package structure, checkout, modify, create, build and run
 - usage of CMT
 - usage of ATHENA services: e.g.: Message, RandomNumber, Histogram and NTuple services
 - detailed study of an t-tbar analysis example
 - AnalysisSkeleton as own analysis starting point
A word on our tutorials

- two interactive ATHENA tutorials organised within our groups to learn
 - structure and philosophy of the ATHENA framework
 - ATHENA terminology (Algorithms, Tools, Data Objects, Transient Data Store, Services, Data Converters, Properties ...)
 - the ATHENA full chain of data processing
 - package structure, checkout, modify, create, build and run
 - usage of CMT
 - usage of ATHENA services: e.g.: Message, RandomNumber, Histogram and NTuple services
 - detailed study of an t-tbar analysis example
 - AnalysisSkeleton as own analysis starting point
- our experience: a very useful starting point to become familiar, however, prefer learning by working on own tasks

D. Dobos
Examples of the AOD studies
(as snapshot from our playground)

• read AOD collections and fill preselected collections
• apply kinematic cuts, e.g. E_t, P_t, η, charge, ...
• apply particle type specific cuts: Jet (em. calo), μ, χ^2, ...
• histograms for all, MC truth and preselected particles
• residuals of kinematics

“preselection”
Examples of the AOD studies (as snapshot from our playground)

- read AOD collections and fill preselected collections
- apply kinematic cuts, e.g. E_t, P_t, η, charge, ...
- apply particle type specific cuts: Jet (em. calo), μ, χ^2, ...
- histograms for all, MC truth and preselected particles
- residuals of kinematics

“preselection”

<table>
<thead>
<tr>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward and backword hemisnphere</td>
</tr>
</tbody>
</table>

gap in the hadron calorimeter

Reiner Klingenberg

Status of top quark physics at Dortmund
t-tbar reconstruction
(first try to learn Athena methods)

- reconstruct $W \rightarrow jj$ candidates with highest P_t vector sum and W mass constrain
- reconstruct $W \rightarrow \ell \nu$ candidates from missingE_t, lepton and W mass constrain
- reconstruct $t \rightarrow W j$ and $t \rightarrow W b$ candidates and take combination with smallest deviation from expected top mass
t-tbar reconstruction
(first try to learn Athena methods)

- reconstruct $W \rightarrow jj$ candidates with highest P_t vector sum and W mass constrain
- reconstruct $W \rightarrow \ell \nu$ candidates from missing E_t, lepton and W mass constrain
- reconstruct $t \rightarrow W j$ and $t \rightarrow W b$ candidates and take combination with smallest deviation from expected top mass

D. Dobos

Tags on b-jets!
t-tbar reconstruction
(first try to learn Athena methods)

- reconstruct $W \rightarrow j \ j$ candidates with highest P_t vector sum and W mass constrain
- reconstruct $W \rightarrow \ell \ \nu$ candidates from missing E_t, lepton and W mass constrain
- reconstruct $t \rightarrow W \ j$ and $t \rightarrow W \ b$ candidates and take combination with smallest deviation from expected top mass

Athena basics understood

![Graph showing mass reconstruction](image)

- Tags on b-jets!
- Both tops @ 175 GeV

D. Dobos
Reiner Klingenberg
Status of top quark physics at Dortmund
How to continue?

- continue learning phase
 - concerning the s/w, analysis and data environment

- continue on analysis techniques:
 - tool development
 - validation of new ATLAS simulation data (DC3)
Dortmund’s top interests and plans

- QCD
- Electroweak physics
- Higgs or new physics
Dortmund’s top interests and plans

Reiner Klingenberg

Status of top quark physics at Dortmund
Dortmund’s top interests and plans

Reiner Klingenberg

Status of top quark physics at Dortmund

in the leptonic / semi-leptonic channel
Dortmund’s top interests and plans

in the leptonic / semi-leptonic channel
Dortmund’s top interests and plans

Reiner Klingenberg

Status of top quark physics at Dortmund

in the leptonic / semi-leptonic channel

single top / electro weak production

Wt associated production
End
Tracking studies

- ATLAS Pixel detector: innermost tracking detector with ~80 million 50x400 μm² cells
- provides three space points in barrel and/or disk layer
- a sector of the ATLAS barrel part has been used for detector performance studies combined test beam
- this emulates transversely (high p_T) emitted particles

Reiner Klingenberg

Status of top quark physics at Dortmund