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Abstract

This note describes a Monte Calro validation study using Z°+1 parton samples. The
Z° + 1 parton events are privately generated using PYTHIA, then simulated by ATLAS
full simulation in Athena v11.0.41. To validate the MC sample, some basic kinematic
plots are made using Analysis Object Data (AOD) and the EventView package, and
some funny behavior is found for muon E, missing energy and jet n, and jet energy
resolution which will require for the investigation.

1 Introduction

ZY 4+ 1 jet is a good sample for jet energy scale studies, since the py of the Z° and jet
are expected to be equal and opposite. To do the jet energy scale studies correctly, it is
important to validate the MC sample. This document describes the Z° + 1 parton MC
sample validation for electrons, muons, missing energy, and jets. The Z° + 1 parton events
are generated using PYTHIA with parton pr > 3 GeV/c or pr > 50 GeV /¢, then simulated
using ATLAS full simulation in Athana v11.0.41, where Z° boson decays to electrons or
muons only. Table 1 shows the number of events generated with each pr cut. All events
are reconstructed to form Analysis Object Data (AOD), and the EventView package with
default job options (The cone radius (R) for jet reconstruction is changed from R = 0.5 to
R = 0.4) is used in this analysis to resolve overlaps between different particle types within
the AOD. The analysis is also based on comparisons between measured and generated
objects. The generated objects are retrieved from the “SpcIMC” container.

Parton pr Events
pr >3 GeV/c 143,122
pr > 50 GeV/e 39,336
Total 182,458

Table 1: Z° 4 1 parton MC samples



2 Validation

2.1 Electron

To compare generated electrons with measured electrons, the closest generator level elec-
trons to the measured electrons are used using dR = +/dn? + d¢?, where dn and d¢ denote
the angles between measured and generated electrons in 1 — ¢ space. Figure 1 shows Er,
7 and ¢ distributions for the measured and generated electrons, and the Er correlation.
Electrons are well reconstructed.
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Figure 1: (a)Er, (b)n and (c)¢ distributions for the measured and generated electrons, and
(d)Er correlation.

2.2 Muon

For the muon comparison, the same dR matching as for electrons is used. Figure 2 shows
the pr, n and ¢ distributions for the measured and generated muons, and the pr correlation.
Figure 3 shows F and p distributions, and the correlations. Although muon momenta are
well reconstructed, some measured muons have larger energies than generated. Figure 4 and
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Figure 2: (a)pr, (b)n and (c)¢ distributions for the measured and generated muons, and
(d)pr correlation.

Figure 5 show correlations between F and p for the measured and generated muons, and the
ratio for the measured muons. Some measured muon energies are not well reconstructed,
and the measured muons are reconstructed with 1.4 times as large as generated muon
energies.

2.3 ZY% Boson

Z9 bosons are reconstructed using di-lepton events with opposite charges. Figure 6 shows
the reconstructed Z° mass distributions. The mass distributions are fitted by Breit-Wigner
functions. The Z° mass for the electron channel is well reconstructed, with a width of 4.7
GeV/c?. However, the Z° mass distribution for muon channel has higher mass tail, because
some muons are reconstructed with larger energies than generated, as described in Sec. 2.2.
For the mis-reconstructed muons, E/p > 1.2 cut is applied (See Figure 5). Figure 7 shows
the Z° mass distribution after removing events with the mis-reconstructed muons. There
is no high mass tail in the mass distribution.
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Figure 3: (a)E, (b)p, (c)E correlation and (d)p correlation for muons.

2.4 Missing Energy After Z°(— ££) Requirement

Figure 8 shows the missing Er, E, and E, distributions after Z°(— /) requirement. Since
muons escape from detectors with large momentum, the corrections for muon pr are applied
to the missing energies. However, there are a peak and tails for Z° — p+p~1. For muon
channel, a event selection to remove events with the mis-reconstructed muons using E/p >
1.2 is also applied, but these peak and tails remain.

2.5 Jet

Jets are reconstructed cone algorithm with R = 0.4. Figure 9 shows multiplicity, Fr, n and
¢ distributions for the measured jets. For 7 distribution, there are peaks around |n| = 0.0
and |n| = 1.5.

! Although the muon spectrometer does not cover 7 = 0, the effects are ignored, because the plots are
made after the Z°(— p* ™) requirement.
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Figure 4: Correlations between F and p for muons. (a)measured muons, (b)generated
muons.

2.5.1 Jet Er Comparison

To compare generator level parton Ep with the measured jets, events reconstructed with
one jet are required; Z° boson reconstruction is not required, to increase statistics. Then
the parton-jet matching is required with dR = /dn? + d¢? < 0.4 and generated parton
Er > 15 GeV2. Figure 10 shows efficiencies for the parton-jet matching. Since at low Er
jet reconstruction is more difficult, the efficiencies for low Er jets are lower than those for
high E7 jets. The efficiencies are also lower around |n| ~ 1.5, because of calorimeter cracks.

Figure 11 shows jet Ep distributions after the parton-jet matching for 0 < |n| < 1,
where the generated parton Ep (Ez(}en) is split into the following regions:

1. 15 < EGen (GeV)< 25,
2. 25 < ESeN (GeV)< 35,
3. 35 < EGen (GeV)< 50,
4. 50 < EGeN (GeV)< 80,
5. 80 < EGeN (GeV)< 120,
6. 120 < EGCN (GeV).

Figure 12 shows jet E7 ratio defined by E%/Ieas / Eg’en, where E%/Ieas is the measured jet
E7. The measured jets at low Er are reconstructed with up to 20% higher energies than
generated. The measured jets at high Er are well reconstructed.

2.5.2 Jet Energy Resolution

Jet energy resolutions are also calculated from Gaussian fit parameters. The jet energy
resolution is defined by og,/Er at the Egen range, where the Er and opg, are Gaussian

2Jet Er threshold is 15 GeV.
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Figure 5: The ratio of E to p for the measured muons.

7 region  Ogiochastic  Pconstant
0<y[<1 1.21+0.07 0.13%0.01

1<|pl <2 1.1240.08 0.12+0.01
2<|pg <3 0.67+011 0.14+0.01

Table 2: The fit results for jet energy resolution.

central value and width. Also, mean of the histogram for the generated partons is used as
the representative point in the ETGen ranges (the error is defined by R.M.S./ V/N, where
R.M.S. and N are the root-mean-square and entries in the histogram for the generated
partons). Figure 13 shows the resolutions for 0 < || < 3, then the resolutions are fitted by

9Er _ Istochastic 4 tant
Er VEr constant»

where ® means A@® B = v/ A2 + B2. Table 2 shows the fit results. For central calorimeters,
the resolutions seems to be worse than expected.

3 Conclusion

The validation of Z° + 1 parton MC samples is conducted using AOD and the EventView
package in Athena v11.0.41.

e Some muons are reconstructed with 1.4 times as large as the generated muon energies,
e Missing energy distributions have an additional peak and tails for Z° — ptpu—,
e Jet 7 distribution has peaks around n = 0.0 and 1.5,

e Jet energy resolutions seem to be worse than expected.
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Figure 6: The reconstructed Z° mass distributions from di-lepton events with opposite
charges. (a)Z% — ete™, (b)Z° — ptpu~.
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Figure 7: The reconstructed Z° mass distribution for Z® — pTp~ after removing events
with mis-reconstructed muons.

These problems should be investigated before starting to study jet energy scale and missing
Er.
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Figure 8: Missing energy distributions. (a)Missing Er, (b)Missing E, and (c)Missing E,,.
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Figure 9: (a)Jet Multiplicity, (b)Er, (c)n and (d)¢ distributions for the measured jets.
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Figure 10: Efficiencies for the parton-jet matching as a function of the generated parton (a)
Er, (b)n, and (c)¢.
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Figure 11: Jet Er distributions for 0 < |n| < 1. (a)15 < ETGen (GeV)< 25, (b)25 < E’g’en
(GeV)< 35, (¢)35 < BN (GeV)< 50, (d)50 < ESEN (GeV)< 80, ()80 < ESEN (GeV)<
120, (£)120 < E:(p}'en (GeV), where E:,Gen denotes the generated parton Er.
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Figure 12: Jet E7 ratios as a function of parton (a)Er, (b)n and (c)é.
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Figure 13: Jet energy resolutions as a function of the generated parton Er.
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