Missing E_T with the First Data: $W \rightarrow I_V$ (I=e, μ)

X.Chen, B.Mellado, S.Padhi and Sau Lan Wu (University of Wisconsin)

Munich Workshop 03-05/05/06

Introduction

Need control samples to evaluate and check the Missing E_{τ} performance with the very first data >Need to address needs of discovery physics during the early stages of data taking \blacksquare Understanding of tails in missing E_{τ} will come form events with no (large) "real" missing energy: multijets, Z(→II)+jets >Can also address resolution issues Use $W \rightarrow I_V$ as high statistics sample to check missing E_T reconstruction with "real" missing energy Same check can be made with more luminosity with Z $(\rightarrow II)$ +jets (turn electrons into "neutrino")

4One can use the sharp end of the transverse mass in different missing E_T bins

- \succ Shape of transverse mass changes with Missing $E_{\rm T},$ due to acceptance
- One can also use the fact that in the average the pt of the charged lepton and the pt of the neutrino are of the W decay are known function, which can be calculated with MC

$$\frac{d\sigma}{dP_{T_{v}}} = f(P_{TL})$$
Function can be calculated
with MC (small uncertainties)
and depends on experimental
cuts

Outlook and Plans

↓pp→W(→lν, l=e,μ)+X is a copious source of events with missing energy.

>Expect O(10K) per 1pb⁻¹

 \succ With 100 pb^{-1} of data can check missing $E_{\rm T}$ in most of useful range for low mass Higgs physics

>Allows to perform checks with different jet topologies

4Method is very sensitive to shifts in missing E_{T}

>Less sensitive to missing E_T resolution. This can be better constrained with di-jets

Whether An Address luminosity required to study missing E_{T} with different jet topologies

Weed to address contamination from top

#After the application of $P_{TL}>20$ GeV, $|\eta_1|<2.5$ cuts the contribution from $W \rightarrow \tau \nu$, $\tau \rightarrow I \nu \nu$ amounts to few % of signal and can be easily subtracted with MC

