Cluster classification estimating EM component of shower

- We use three topological moments which are correlated with the EM fraction of deposited energy to calculate this fraction
- Our estimation of EM component of deposited energy is calculated as weighted mean value of particular estimations
- It was shown that our estimation and MC truth are strongly correlated if deposited energy is not too small

- I use the following moments to identify EM clusters:
 - SECOND_R -second radial moment (shower effective radius)
 - SECOND_LAMBDA -second longitudinal moment (shower effective half length)
 - CENTER_LAMBDA
- As was already mentioned the moments are correlated with the electromagnetic component of the deposited energy

Second moments definition:

$$\lambda^2 = \frac{\sum_{i=1}^n \lambda_i^2 \cdot E_i}{\sum_{i=1}^n E_i} \qquad r^2 = \frac{\sum_{i=1}^n r_i^2 \cdot E_i}{\sum_{i=1}^n E_i}$$

• r_i - radial distance of i-th cell from shower axis

- λ longitudinal distance of i-th cell from shower center
- E_i energy deposited at i-th cell
- \bullet *n* number of cells in cluster

The calorimeter is divided into 25 equidistant η bins

- I use simple linear fit to calculate the electromagnetic component of the deposited energy (i.e.l receive 3 different but strongly correlated calculated EM components)
- afterwards I try to find optimal weighted mean value of calculated EM components using MINUIT to minimize the spread (I plot calculated vs. trueEM component big black square are 100 GeV electrons)
- This method works only for clusters with the deposited energy above the E_T cut for the corresponding η bin

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

7

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

Slice	$E_T cut[MeV]$
0	1000
1	1500
2	1500
3	2000
4	3000
5	2500
6	1500
7	1000
8	1000
9	1000
10	500
11	500
12	500
13	500
14	500
15	500
16	500
17	500
18	500
19	500
20	500
21	500
22	500
23	1000
24	-

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

Classification validation

- For validation of this classification method (derived from MC single pions data) the both of electrons and QCD di-jets samples were used
- Above mentioned method works for electrons the most of energy belongs to clusters which are tagged as EM

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

- For QCD di-jets in generally only small fraction of energy belongs to clusters which contains more than 90% of EM energy (~ 8%) (Note that more then 60% of jet energy is deposited through EM interaction !)
- The most of such (EM) clusters contains only very small deposited energy
- Looking to the results for this group of clusters only $\sim 25\%$ of energy belongs to clusters which are tagged as EM (Note that 100% is energy which should be tagged as EM following MC truth info)

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

- ... but EM component estimation works for jet clusters as well
- ... if they contain enough deposited energy, of course ...
- this information can be used for more sophisticated classification of the most energetic hadronic clusters

Pavel Šťavina and Vladimír Fekete, München, May 3th, 2006

Conclusions

- Using the calibration hits and moments information we are able to estimate EM compoment of single pion signal
- In a case of electrons as an incident particle the most of energy belongs to clusters which are tagged as EM
- Estimated EM component of deposited energy for jet clusters is well correlated with MC truth