γ/Z + jet E_T -Projection

Doug Schouten dschoute@sfu.ca

Simon Fraser University

04/05/06

Reminder: motivation

- the jet response calibration takes a calorimeter-level jet back to a particle-level jet
 given some calorimeter signal, what was the energy of the incident particle jet?
- other effects also contribute to the overall energy scale: out of cone corrections, showering correction, noise offset

the basic idea

Missing E_T Projection Fraction

In an ideal calorimeter, the γ and jet from prompt- γ production processes satisfy the equation

$$\vec{E}_T^{\gamma} + \vec{E}_T^{jet} = 0. \tag{1}$$

In a real (Atlas) calorimeter, the hadronic energy is not measured as well as the electromagnetic energy, and so the modified equation is

$$R_{em}\vec{E}_T^{\gamma} + R_{jet}\vec{E}_T^{jet} = -\not\!\!\!E_T \tag{2}$$

Anticipating that the EM scale can be measured well enough with $Z,~J/\Psi,$ and π^0 samples that $R_{em}\approx 1,$ this reduces to

MPF

$$R_{jet} = 1 + MPF = 1 + \frac{\hat{n}_{\gamma} \cdot \overrightarrow{E}_T}{E_T^{\gamma}}$$
(3)

Some things to note:

- \vec{k}_T independant of jet algorithm, underlying event, and (somewhat) FSR
- method is sensitive to falling γ cross-section in E_T /jet resolution (low energy bias)

• use
$$E' = cosh(\eta_{jet})E_T^{\gamma}$$
 instead of E_T^{jet}

 \blacksquare cut on $\Delta\phi$ |essens effects of ISR/FSR

see note by B. Kehoe ATL-COM-PHYS-2005-050

ISR/FSR

ISR/FSR turned off (top row), Rome data (bottom row)

 final state radiation may add jets to the event topology

- problem: assume that \overrightarrow{E}_T only from imbalance of γ and jet • if 2nd jet $< (>)90^\circ$ from 1st
- if 2nd jet < (>)90^d from 1st jet, response is under(over)-estimated
- initial state radiation skews p_T balance

ISR/FSR II: $\Delta \phi(jet,\gamma)$ Cuts

try to negate effects of ISR/FSR by imposing strict $\Delta\phi$ cuts \hfill guarantees that γ and jet are back-to-back, so p_T balance \simeq holds

jet response

ISR/FSR effects

- \blacksquare about a 2% shift in response between no $\Delta\phi$ cut, $\Delta\phi>2.7$
- \blacksquare low- E_T bias due to convolution of jet reconstruction threshold/resolution

MPF

algorithm

- \blacksquare identify leading γ w/ isolation E_T < 0.15, isEM % 0x7ff = 0
- \blacksquare match leading jet in $\Delta\phi>2.7$ window
- **bin** R_{jet} , E_{jet} in E'

MPF

notice

- weak dependance on number of jets
- $\blacksquare \eta$ dips same as reported by Kehoe, Paige
- \blacksquare relatively constant for $\Delta\phi\gtrsim 2.2$

Status/Future Plans

Conclusions:

- verified qualitatively the results presented by Kehoe et al, at Rome workshop
- jury still out on quantitative differences: H1-calibration?
- **•** E_T projection seems to be a good method of in-situ calibration, with ample experience at $D\emptyset$

Future Work:

- currently concentrating on later running conditions (high luminosity): how does pileup affect the jet energy scale?
- redo analysis @ EM scale to settle differences noted above