Update on Data Streaming *

- Charge to the Study Group
- Baseline and Context
- Data flow from HLT to Tier0
- Studies with physics streams
- Number and size of files to Tier0
- Calibration streams and express stream
- Overlapping vs. exclusive streams
- Status

* Jean-Francois Arguin, Sebastien Binet, Szymon Gadomski, Marjorie Shapiro, Ian Hinchliffe, Jack Cranshaw, David Malon, Richard Hawkings, Tom LeCompte, Roger Jones, Gordon Watts, Zhongliang Ren, Sander Klous, RD Schaffer, Wouter Verkerke, Ivo van Vulpen, Fabiola Gianotti, Dario Barberis, Nick Ellis, David Quarrie, Chris Bee, Livio Mapelli, Giacomo Polesello, Hans von der Schmitt

Streams: TDAQ side

Charge to the Study Group

- Perform quantitative studies on questions including
 - Which streams generated at Point1 and at Tier0
 - Overlapping vs. Exclusive streams
 - Streams and merging at the ESD and AOD level
- and give recommendation to COB
- Underlying questions
 - Should we deviate from "baseline" and for which goals
 - Feasibility / implications for TDAQ and Data Management
 - Interplay with luminosity blocks
- ◆ Study group has been set up in December 2005
- Participation from
 - TDAQ, Software, Computing Model, Physics, and Luminosity
- More on the web: http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/COMMISSIONING/streaming.html
 use cases: https://twiki.cern.ch/twiki/bin/view/Atlas/DataStreaming

Context

Baseline

- Relevant documents include:
 - Online-Tier0 Taskforce (December 2004)
 - ATLAS Detector Calibration Model (February 2005)
 - Computing TDR (June 2005)
- Streams generated at Point1 as foreseen in the baseline:
 - One bulk physics stream
 - Important part of work is to study subdivision of this stream
 - If more than one, overlap between streams becomes an issue
 - One express physics stream
 - Several calibration streams
 - ◆ Ranging from partial event data (e.g. L1 Regions of Interest)
 - ◆ To full events which are used in physics analyses
 - One debug / diagnostic stream
- Guiding principles: efficiency, flexibility
 - Efficiency in the HLT has other criteria than offline, etc.

Overview of streams, files

 Hierarchy of (logical) streams: streams can be divided into narrower ones - but streams are never mixed

Overview of streams, files, lumi blocks

- That much we have per SFO
- More on event index: https://twiki.cern.ch/twiki/bin/view/Atlas/EventIndex

April 24, 2006 / hvds Data Streaming Update

Overlapping (nclusive) vs. Disjoint (exclusive) streams

(possible problems in red italic

Physics streams under study at present - "strawmen" (J.-F. Arguin, LBL)

- Express stream
- Stream A: electrons
 - e25i, 2e15i, e15imu10
 prescaled triggers
- Stream B: muons
 - mu20i, 2mu10 + prescaled triggers
- Stream C: jets
 - j400, 2j350, 3j165,
 4j110, jetSumEt1000,
 SumEt1000
 - +prescaled triggers

- Stream D: photons
 - gam60i, 2gam20i +
 prescaled trigger
- Stream E: missing Et and taus
 - tau60i, tau35i+xE45,
 xE200, j70+xE70 +
 prescaled trigger
- Stream F: B physics
 - 2mu6+mass, 1mu6, etc.
- Stream G: Luminosity, zero-bias
 - min. bias, zero bias, roman pots, etc.

- Each stream contains similar physics:
 - similar users and reprocessing needs
 - Minimize overlaps
- Based on triggers information (TDR)
- Overlaps allowed between streams but not within a stream (see example next page)
- Note: separate e and mu to avoid excessive access to a "super" single lepton stream
- ◆ Scenarios: 1-2*10^33, also initial trigger menu for 1*10^29
- Maybe combine A with D

Rates seen per stream (Rome and CSC samples)

(J.-F. Arguin, LBL)

	(JF. Arguin, LBL)										
	Event Rates I (Hz) ($\int \mathcal{L}dt = 2 \times 10^{33} cm^{-2} s^{-1}$)										
			Stream A		Stream	n B	all Strea	m C			
Processes		e25i	2el 5i	el5imul0	mu 20i	2mu 10	j400	2j 350			
	Dijet (17-35 GeV)	0±0	0±0	0±0	0±0	0±0	0±0	0±0			
	Dijet (35-70 GeV)	42 ± 5.7	0.79 ± 0.79	0.79±0.79	3.1 ± 1.6	13±3.1	1.6 ± 1.1	0±0			
	Dijet (70-140 GeV)	4.4 ± 0.79	0.14 ± 0.14	0.28±0.2	0.28 ± 0.2	2.8±0.63	0.28 ± 0.2	0.28±0.2			
1	Dijet (140-280 GeV)	0.41 ± 0.092	$0 \pm 1.1 e-24$	0.041±0.029	0.062 ± 0.036	0.97±0.14	0.41 ± 0.092	0.041±0.029			
1	Dijet (280-560 GeV)	0.0023 ± 0.00055	0±7e-27	0.00027±0.00019	0.00027 ± 0.00019	0.029±0.0019	0.31 ± 0.006	0.27±0.0056			
		0.00042 ± 0.00024	0.00014 ± 0.00014	0±0	0±0	0.031±0.002	0.7 ± 0.0016	0.64±0.0031			
	-, (/	9.1e-06±3.7e-06	$0 \pm 2.8 e - 28$	0±0		0.0014±4.3e-05	0.011±1.5e-06	0.011±5.2e-06			
Г	Diiet (>2240 GeV)	39e-07±1.5e-07	0+18=-29	5.6e-08±5.6e-08		<u>0.00013+2.3⇔06 </u>	0.00048±0 0	000048+5 6=-08			
	i				$\mathcal{L}dt = 2 \times 10^{33} cm^{-}$	-		2 2 2			
			ream C		eam D	I .	eam E	Stream F			
	Processes	3j165	4j 110	gam60i	2ga.m20i	tau35ixE45	j70x E 70	2mu6cut			
	Dijet (17-35 GeV)	0±0	0±0	0±0	0±0	0±0	0±0	0±0			
	Dijet (35-70 GeV)	0.79±0.79	2.4 ± 1.4	17 ± 3.7	2.4 ± 1.4	0±0	10 ± 2.8	1.6±1.1			
	Dijet (70-140 GeV)	0.43±0.25	0.14 ± 0.14	17 ± 1.6	0.43 ± 0.25	0.28±0.2	3.1 ± 0.66	0.14±0.14			
7	Dijet (140-280 GeV)	1.9±0.2	1.2 ± 0.16	1.9 ± 0.2	0.041 ± 0.029	0.21±0.065	3 ± 0.25	0.041±0.029			
	Dijet (280-560 GeV)	0.14±0.0042	0.055 ± 0.0027	0.015 ± 0.0014	0.00066±0.0003	0.002±0.00051	0.074 ± 0.0031	0.00027±0.00019			
	Dijet (560-1120 GeV)	0.21±0.0046	0.085±0.0033	0.0072±0.001	0.00098±0.00037	0.0017±0.00049	0.12±0.0037	0.00084±0.00034			
_	Dijet (1120-2240 GeV)	II .	0.0023±5.3e-05	0.0002±1.7e-05	9.1e-06±3.7e-06	2.4e-05±6e-06	$0.0042 \pm 6.3 = 05$	3.8e-05±7.6e-06			
_	Dijet ($>2240 \text{ GeV}$)	0.00023±2.6e-06		9.8e-06±7.3e-07	3.3e-07±1.4e-07	1.1e-06±2.5e-07		4.1e-06±4.7e-07			
s	7 + 1 = 0	0.0076±0.0054	0±0	8.8±0.18	0.45±0.041	0.0038±0.0038	0.12±0.021	0±0			
_	W→er/	0±0	0±0	0.064 ± 0.012	0.0021±0.0021	1.3±0.051	0.16±0.018	0±0			
_	$W \rightarrow \mu \nu$	0±0	0±0	0.0031±0.0015	0.0015±0.0011	0.0077±0.0024	0.36 ± 0.016	0.00077±0.00077			
	Z→ee	0.00018±0.0001	0.00018±0.0001	0.017±0.00099	0.0029±0.00042	0.0034±0.00045	0.00048±0.00017	0±0			
	$Z \rightarrow \mu\mu$	0±0	0±0	0.00035±0.00011		0.00038±0.00011		0±0			
	$Z \rightarrow \tau \tau \text{ (loose)}$	2.7e-05±2.7e-05		0.0013±0.00019	0.00083±0.00015	0.0029±0.00028	0.007±0.00043	0±0			
	γ /Z (30 <m<81 gev)<="" th=""><th>0±0</th><th>0±0</th><th>0.00061±0.00012</th><th></th><th>0.0028±0.00026</th><th>0.005±0.00034</th><th>0±0</th></m<81>	0±0	0±0	0.00061±0.00012		0.0028±0.00026	0.005±0.00034	0±0			
	γ /Z (M>100 GeV)	2.8e-05±7.5e-06		0.0035±8.3e-05	0.00035±2.6e-05	0.016±0.00018	0.011±0.00014	2e-06±2e-06			
		2.2e-06±2.2e-06		0.017±0.00018	0.06±0.00029	8.9e-06±4.5e-06		0±0			
	ZZ→41	2.3e-08±5.7e-09		1.8e-06±5e-08	3.3e-07±2.2e-08	1.4e-05±1.3e-07		8.6e-09±3.5e-09			
	$ttbar (\geq 11)$	0.0056±0.00017	0.0066±0.00018	0.0081±0.0002	$0.00064 \pm 5.8e - 05$	0.099±0.00068	0.32 ± 0.001	0.00018±3.1e-05			
	Single-top (Wg fusion)	8.5e-05±2.6e-05	1.5e-05±1.1e-05	0.00083±Se-05	4.6e-05±1.9e-05	0.0096±0.00026	0.021±0.00037	0±0			

0.00029±1.7e-05

 46 ± 4

2e-05±4.4e-06

3.4±1.4

 ~ 40

 $0.003\pm5.1e-05$

 1.9 ± 0.22

 $0.0081 \pm 7.6e - 05$

18±2.9

 ~ 20

2.9e-06±1.7e-06

 3.8 ± 1.4

 ~ 25 (Stream C)

 3.5 ± 0.85

2.9e-06±1.7e-06

1.8±1.1

 ~ 10

Single-top (Wt)

Total

Predictions

Also prescaled triggers taken into account (J.-F. Arguin, LBL)

- ◆ 53 prescaled triggers, inspired from HLT TDR
- Scenario: 1*10^33
- Remaining bandwidth (200-115 = 85Hz) shared between prescaled triggers

Rate fo	or prescal	led triggers				
Streams	Triggers	Prescale	Output rate			
	e25	231	0.988±0.	566		
	e20i	102	2.4±0.8	94		
A	e15i e10i	38.4 151	Rate fo	rpresc	aled triggers	
	eroi e7i	775	Streams	Triggers Prescale		Outrout rate
	2e5i	1.77e+03	Sueams			Output rate
	mu20	60.5	-	gam40i	87.3	1.19±0.571
В	mul5i	23.9		gam25i	509	0.912 ± 0.561
"	mu10i	94.9		gam20i	1.03e+03	0.193 ± 0.101
-	j 300	7.74	D	gam15i	2.72e+03	0.413 ± 0.394
	j 200	69.5	E	gam10i	1.01e+04	0.0756±0.0709
	j150	277		gam7i	2.02e+04	0.397 ± 0.394
	j 100	1.48e + 03		2ga.m7i	601	3.79 ± 3.79
	j70	5.68e+03		tau60i	21.6	1.75±0.704
	j50	1.95e+04		tan40i	35.1	4.51±3.8
	j20	3.24e+05		tau35i	38.4	0.688±0.401
	2j200	17		tan25i	53.9	0.833±0.413
	2j150	81.9				
c	2j100	473		2tau35i	7 7 7	1.62 ± 0.107
C	2j70	1.72e+03		2tau25i		1.55±0.0386
	2j50 2j20	5.55e+03 9.9e+04		xE 200	1.03	1.62 ± 0.396
	3j150	2.03		xE150	1.1	1.64 ± 0.397
	3j100	23.6		xE100	3.15	1.61 ± 0.572
	3j70	136		xE70	20.6	0.787 ± 0.413
	3j50	600		xE45	237	0.192 ± 0.101
	3j20	1.94e+04		тибі	281	0.0282±0.0031
	4j100	2.22	F	mu 5i	384	3.82±3.79
	4j70	18.6	F	2mu6	28	1.42±0.69
	4j50	118				
	4j20	5.61e+03		2mu5	51.5	0.553±0.105
			To	tal	-	85.8

Results for overlaps (unprescaled + prescaled triggers) (J.-F. Arguin, LBL)

Final Overlap Table (rate in Hz)											
Streams	electrons (A)	muons (B)	jets (C)	photons (D)	xE and taus (E)	B physics (F)					
electrons (A)	38±8.8	0.1 ± 0.0057	0.0039 ± 0.0015	0.0077 ± 0.0022	3.1 ± 0.4	$8.6e-06\pm4.5e-06$					
muons (B)		40 ± 10	$0.022 {\pm} 0.015$	0.0034 ± 0.002	0.3 ± 0.075	1 ± 0.57					
jets (C)	_	-	54 ± 8.8	0.11 ± 0.03	0.7 ± 0.4	0 ± 0					
photons (D)	_	(<u>)</u>	_	40 ± 7	0.055 ± 0.013	0 ± 0					
xE and taus (E)	1-0	87 -3 7		=	26 ± 6.8	$3.9e-06\pm3.9e-06$					
B physics (F)	_	11-1	_	_		$1.6 {\pm} 0.7$					

Note: table contains only events passing 1 or 2 streams Rate for passing 3 or more streams is 0.075 ± 0.019 Hz

Total overlap =
$$2.726 \pm 0.698\%$$

- Diagonal elements: rates for passing one and only one stream
- Off-diagonals: rates for passing two streams
- → Overlap (in inclusive streaming) is not a problem of data volumes

Physics use cases with the strawman streams (S. Binet, LBL)

- Top analyses:
 - mass (lepton+jet, dilepton)
 - x-section
- W analyses:
 - mass
 - x-section
- Higgs mass
 - various mass ranges
 - w/ w/o VBF
- Calibration
 - ECAL
 - Spectro.
 - Inter-calibration
 - JES:
 - Z/Gamma+jet
 - ◆ E/p
- S.Binet W -> jj

- SUSY:
 - SUGRA signatures
 - SUGRA @ large tanBeta
 - GMSB
 - R-parity breaking models
- Extra-dimensions
- Technicolor
- Drell-Yan
 - dilepton mass spectrum
 - gamma gamma prod.
- QCD
- B-Physics
- Minimum bias

Frequency of usage of streams (preliminary)

(S. Binet, LBL)

(Ci Sinot, 252)									
Analysis Name	Stream A	Stream B	Stream C	Stream D	Stream E	Stream F	Stream G	# Analyses	
Top mass (dilepton, I+jet), cross section	3	3						3	
W cross section, mass	2	2						2	
Higgs mass analyses	11	10	1	2	1			12	
SUSY	12	12	1	1	14			24	
Technicolor	3	3	1					4	
Extra-dimensions	2	2	1		2			5	
Drell-Yan		1		1				2	
QCD			1	1				2	
B-physics						10		10	
Calibration	4	5		1	2			7	
mini. bias, zero bias							1	1	
TOTAL	37	38	5	6	19	10	1	72	
Ratio	~ 50%	~ 50%	~ 7%	~ 8%	~ 25%	~ 15%	~ 2%		
Analysis Name	A + B	A + D	C+D	C+E	A+B+E	A+B+D			
Top mass (dilepton, I+jet), cross section	3						1		
W cross section, mass	2						1		
Higgs mass analyses	10	1	1		1		1		
SUSY	12	1		1		1			
Technicolor	3						1		
Extra-dimensions	2						1		
Drell-Yan							1		
QCD							1		
B-physics							1		
Calibration	3			2	2				
mini. bias, zero bias									

• e and mu streams are dominating, also in combination e+mu

~ 3%

35

~ 50%

TOTAL

Ratio

April 24, 2006 / hvds Data Streaming Update 14

~ 2%

~ 5%

~ 5%

~ 2%

File sizes from SFOs

(S. Gadomski, Bern)

Trigger menu and rated from TDR, table 13-11										
Luminosity 2x10^33			4	SFOs		MB/event				
HLT signature	Rate [Hz]		Stream	Rate [Hz]	[Hz/SFO]	ev/min/SFO	MB/min/SFO			
e25i	40									
2e15i	1									
gamma60i	25									
2gamma20i	2	A+D	egamma	68	17	1020	1632			
mu20i	40									
2mu10	10	В	mu	50	13	750	1200			
j400	10									
3j165	10									
4j110	10									
j70+xE70	20									
tau35i+xE45	5	C+E	jtauetmiss	55	14	825	1320			
2mu6 with vertex etc	10	F	Bphysics	10	3	150	240			
Others (incl calibration)	20	G++	others	20	5	300	480			
Total	203			203	51	3045	4872			

- Number and size of files are a potential worry at Tier0 (Castor I/O, book-keeping)
- Assumption: 1 minute lumi blocks, files closed at lumi block boundaries
- Note: fewer SFOs matches network bandwidth; improved disk I/O rate used
- → All physics file sizes are reasonable but beware: calibration is subdivided further

File sizes from SFOs - exclusive streaming

(S. Gadomski, Bern)

narameters

SEO 10

Scanario 1

	parameters	SFO 10				
		LB [min] 5		The odd	litional aver	lon
		MB/event 1,6				
				streams	generate s	mall,
						,
,				addition	ai ilies	
,		•		Also the	eir choice d	enends
•						
,		•		on lumi	(and backg	round)
,				condition	ne	Í
•				Contaition	10	
•				From on	line point o	f view
•						· · · · · · · · · · · · · · · · · · ·
				can arro	ra exclusive	€
220,60	6618	10589		streams	only with s	ome
					and the second s	Offic
				simplific	ations	
	parameters	SFO 10		Drofor in	volucivo etro	ama
		LB [min] 5		Prefer ii	iciusive sire	eams
		MB/event 1,6				
		MB/LB/SFO				
	Scenario 2		pa	arameters	SFO	10
	L=1e33 includi	ng prescaled	•		I R [min]	5
	L 1000, moladii	ig procedica				
					MD/event	1,0
	Stream	Rate [Hz]	ev	//LB/SFO	MB/LB/SFO	
	electrons (A)	38.00		1140	1824	
	лэмэлэ (D Ì Г)	,				
		,				
205,08	• ` ′	•				
	`					
	Overlaps	3,78		113	181	
	Total	205,08		6152	9844	
	40,00 54,00 40,00 26,00 1,60 3,10 1,00 1,38	58,00 1740 67,00 2010 8,90 267 48,00 1440 34,00 1020 1,70 51 1,30 39 1,20 36 0,50 15 220,60 6618 Rate [Hz] ev/LB/SFO 38,00 40,00 54,00 40,00 26,00 1,60 3,10 1,00 1,38 205,08 Parameters Scenario 2 L=1e33, includion electrons (A) muons (B+F) photons (D) jet+tau+xE (C+E Overlaps	LB [min] 5 MB/event 1,6	Rate [Hz] ev/LB/SFO MB/LB/SFO	Rate [Hz] ev/LB/SFO MB/LB/SFO	Rate [Hz] ev/LB/SFO MB/LB/SFO

Calibration streams to Tier0 (from Detector Calibration model, Feb. 2005)

System	Stream	Readout	Rate×size	Source	Comments/data type
			$Hz \times kB$		
ID	Generic tracks p _T >2 GeV	ID ROI	100 × 40	EF all	Custom trackfit+hit data
LAr	Electrons p _T >20 GeV	EM ROI	50 × 50	EF all	5-sample EM RAW data
Muon	Muon $p_T > 6$ to 20 GeV	MDT/CSC	1000 x 1	LVL2	Custom trackfit using trigger
	LVL1	/RPC/TGC		all	and precision hits
		ROI			
MDT	High p _r muons in large/	MDT/RPC	6 x 5	EF	MDT/RPC hits only in large /
	small chamber overlap	ROI		special	small chamber overlap regions
HAD	isolated hadron	ROI (here	~ 5 x 400	All	Single-prong tau trigger (needs
calos	$p_T > \sim 20 \text{ GeV}$	0.4 x 0.4)	?		more study)
All	Inclusive e/μ p _T >20 GeV	Full event	20 x 1600	EF all	Duplicate interesting events
All	di-leptons ($Z \rightarrow 11$)	Full event	1x1600	EF all	Duplicate $Z \rightarrow 11$ events
All	Prescaled minimum bias	Full event	1x1600?	EF	Duplicate minimum bias events
				enecial	

- Some streams have clean separation from physics
- ◆ **Duplication** calibration/physics (even triplication with express) to be avoided where possible although calib streams are "cheaper" without lumi assignment
- Need to be revisited if more than one physics stream written
- Also need extra/updated input from some detectors

File size/number calculations at Tier0 (L. Goossens, CERN)

- Current model (one bulk physics stream from SFOs)
 - One sequence of RAW files per SFO, each file 1000 events (no lumi blocks)
 = 1.6GB, 17k RAW files/day
 - Reconstruction job inputs one RAW file, 1 ESD and 10 AOD files per RAW,
 17k ESD + 170k (temporary) AOD files/day
 - Merging of temporary AOD files belonging to one run (~100) into one AOD,
 1.7k AOD files/day
- New model (assume 7 streams, 7 SFOs, 1min lumi blocks: worst case)
 - 7 sequences of RAW files per SFO, 200Hz*1min/49 = 250 events per RAW file, 68k RAW files/day
 - Reconstruction job can input 4 RAW files, produces 2 AOD streams per RAW stream, 17k ESD + 34k AOD files/day
 - → 4* number of RAW, but only 1/5 number of AODtmp due to streamed RAW
 - → Absorb the factor 4 e.g. in 5min lumi block duration
- The small calibration files need additional attention
 - Proposed not to chop calibration streams into lumi blocks
 - Study merging of files from different SFOs for low-volume streams

Status

- Settled: physics streams definition is based on trigger signatures
- Settled: ability (and usefulness) to produce several RAW physics streams at Point1
 - react flexibly to different calibration needs
 - more flexible re-reconstruction esp. during startup
 - some full-event calibrations streams will be physics streams instead e.g. inclusive electrons, muons
- Luminosity conditions have little effect on overlaps
 - even for initial conditions (10^29 /cm2/sec)
- Inclusive vs. exclusive streams under further discussion
 - so far, inclusive streams preferred by most
- Need detailed contents of express stream
- Need updated list of detector calibration streams

Extra slides

Distributed data management

ATLAS Tier-0

Flow of Data and Metadata from the Cavern via Tier0 worldwide: Distributed Data Management

