- Effect of Magnetic Field on VXD Performance
- Response of DEPFET Sensors to Inclined Tracks

Alexei Raspereza

ILC-MPI Meeting May 15

Lorentz Effect

Reference Points

- $\theta_{\rm L}$ has been measured @ 4T field
 - - $\theta_{L}(4T)=33^{\circ}$ [W.Boer *etal.* NIM A461 (2001) 200]
- Experimental data and theory : $r_{H}(B) \approx 1 \implies$
- $\tan\theta_{L}(B) = \tan\theta_{L}(B_{0}) \times B/B_{0} : B_{0} = 4T \Longrightarrow$
 - * $tan\theta_{L}(3T) \approx 0.49 \ (GLD);$ * $tan\theta_{L}(4T) \approx 0.65 \ (LDC);$ * $tan\theta_{L}(5T) \approx 0.81 \ (SiD);$

R- Φ Resolution for normally incident tracks

R- Φ **Resolution**

R- Φ **Resolution**

IP Resolution (low p_{T} tracks)

IP resolution dominated by multiple scattering [b-term ; $\sigma = a \oplus b/p_T \cdot \sin^{3/2}\theta$] \Rightarrow marginal B-field effect

IP Resolution (high p_{T} tracks)

IP resolution dominated by spatial point resolution [a-term ; $\sigma = a \oplus b/p_T \cdot \sin^{3/2}\theta$] \Rightarrow sizable B-field effect

IP Resolution [RMS]

D0 Resolution [RMS]

IP Resolution [Gauss Width]

D0 Resolution [Gauss width]

Is G4 Simulation of E_{loss} Fluctuations @ Short Flight Distances reliable?

DEPFET Sensor Response to Inclined Tracks

Particularly interesting data

 Allow to check simulation of straggling functions at short flight distance / thin Si sensors

Analyzed DEPFET Matrix (Hyb2A):

- Pixel dimensions : $D_x = 36 \text{ um}, D_y = 22 \text{ um};$
- Layer thickness = 450 um; electronic noise = $300 e^{-1}$
- Rotations up to 40° around X axis [θ -rotations] and Y axis [ϕ -rotations] are performed

Total Cluster Amplitude (Normal Track Incidence)

Data collected at normal track incidence is used to derive coefficient converting E_{loss} into ADC counts

Amplitude Distribution vs Incidence Angle

Peak Value vs Incidence Angle

Cluster Length X vs Incidence Angle

Cluster Length Y vs Incidence Angle

Cluster Size vs Incidence Angle

Probing Straggling Functions @ short flight distance

- Validity of G4 simulation of energy loss fluctuations @ short flight distances can be probed by investigating distributions of signal projection on pixel rows (columns) perpendicular to the inclined track momentum
- Probed scale : $D_{x,y}/\sin(\theta,\phi), D_{x,y} \text{ being pixel dimensions}$
- Expected mean signal on central rows (excluding edges) :

$$\mathsf{A}_{\mathsf{row,column}} pprox \mathsf{A}_{\mathsf{0}}\mathsf{D}_{\mathsf{x},\mathsf{y}}/(\mathsf{L}\cdot\mathsf{sin}(heta,\phi)),$$

- L is layer thickness,
- A₀ is total cluster amplitude for normally incident track

In the following only few representative columns(rows) are shown

Signal projected on pixel rows $[\theta$ -rotation; θ =40°]

Signal projected on pixel columns [ϕ -rotation; ϕ =40°]

Concluding Remarks (1)

- Simulation study of magnetic field effect on the DEPFET based VXD performance is performed
- Effect is evaluated in terms of single point and impact parameter resolution
- No drastic deterioration of VXD performance with increasing magnetic field is found
- At 5T field VXD performance still meets ILC physics requirements

Concluding Remarks (2)

- Simulations of DEPFET sensor response to inclined tracks are performed and compared to testbeam data
- Simulation of E_{loss} fluctuations is verified @ short flight distance of ionizing particles utilizing testbeam data collected at track incidence angles up to 40°
- These data allow to probe E_{loss} fluctuations @ a scale of d/sin $\theta \approx 30$ um, where d is the pixel dimensions and θ is the track incidence angle
- Good agreement between simulations and data is found giving confidence in Geant4 MC simulations