- Spatial Resolution of DEPFET
 Prototype Sensors
- Characteristics of Background Hits in the Vertex Detector

Xun Chen & Alexei Raspereza ILC-MPI Meeting, June 19 2006

Determination of DEPFET Prototype Sensor Resolution in Testbeam

- Sensor resolution is measured by employing supporting device : the Bonn Atlas Telescope (BAT)
 - Pitch size = 50 μ m ; intrinsic resolution = 4.5 μ m
- The track is reconstructed from the point measurements in the four planes of telescope, straight line fit is employed
- Resolution is defined as a difference between reconstructed position in the DEPFET sensor and intersection point of the reconstructed track with the sensor plane
- Total point resolution : $\sigma_{tot} = \sigma_{depfet} \oplus \sigma_{MS} \oplus \sigma_{telescope}$

Point Measurement with DEPFET Sensor

- Determination of point position in DEPFET is based on η -algorithm
- First, quantity η is calculated : $\eta = Q_{right} / (Q_{right} + Q_{left})$, where $Q_{right} \& Q_{left}$ are charges deposited on two hottest neighboring rows (columns) of pixels
- The resulting position is determined as :

$$\mathbf{x}_{\eta} = \mathbf{x}_{\text{left}} + \Delta \mathbf{x} \cdot \int_{0}^{\eta} \mathbf{f}(\eta') d\eta'$$

 x_{left} is coordinate of left row, Δx is pitch size, $f(\eta')$ is pdf assocciated with distribution of η

Testbeam Results

 Results are presented for representatively chosen matrix Hyb2A

– Pitch size (X,Y) = (36,22) μ m; Thickness = 450 μ m

- Resolution is measured as a function of e⁺ beam energy; energy scan in the range 1-6 GeV has been performed
- Obtained resolutions @ 6 GeV beam energy

$$\sigma_{\rm x,tot} = 8.1 \ \mu {\rm m}$$
 ; $\sigma_{\rm y,tot} = 7.1 \ \mu {\rm m}$

• Contributions from various factors can be understood by performing simulation studies

η-Distributions : Testbeam Data vs. Simulations

Spatial Resolution of DEPFET Prototype Sensors (Simulations)

Contribution from Multiple Scattering

- Effect of MS is evaluated by simulating particle interactions with DEPFET sensors and telescope planes within Geant3 framework (Bonn group)
- Estimated MS resolution @ 6GeV e⁺ energy : 6.5 μ m
- Resulting total resolution obtained from MC simulations

-
$$\sigma_x = 7.0 \ \mu \text{m}; \ \sigma_v = 6.8 \ \mu \text{m}$$
 compared to

$$\sigma_{\rm x}=$$
 8.1 μ m; $\sigma_{\rm y}=$ 7.1 μ m (testbeam results)

- Total resolution as measured in testbeam seems to be totally dominated by MS and intrinsic telescope resolution
- Data @ higher energies are needed to reduce MS effect

Characteristics of Background Hits Background track Signal track

- Hits originating from beam induced backgrounds are produced by low momentum particles curling in magnetic field. This results in a rather shallow incidence angles w.r.t VXD planes ⇒ background hits
 - have on average bigger clusters (larger width in r- ϕ plane)
 - are characterised by larger deposited charge

Background vs. Signal Hits

- Characteristics of background hits are compared to those produced in signal reactions, e.g. tt ⇒ 6jets @ 500 GeV
- Simulated DEPFET sensors have thickness of 50 μ m and pitch size 25×25 μ m²
- VXD Geometry

	Radius	Ladders	Length
	(cm)		(cm)
1	1.5	8	10.0
2	2.6	8	2×12.5
3	3.8	12	2×12.5
4	4.9	16	2×12.5
5	6.0	20	2×12.5

Quantities Discrimination Background & Signal Hits

Quantities Discrimination Background & Signal Hits

Outlook: Proposed Strategy to Handle Fake Tracks

- Differences in the characteristics of signal and background hits can be exploited to suppress fake track rate
- One possible solution (proposed by Ariane) would be to combine discriminating quantities of all hits contributing to a given track with reconstructed track parameters (curvature, polar angle) into neural network or correlation-sensitive likelihood in order to quantify the probability of track to be a fake (consisting mainly of background hits)
- A cut on NNet output or likelihood can be imposed to select "good" tracks
- A detailed dedicated studies are planned