Determination of the Drift-Velocity in ATLAS MDT Chambers

Oliver Kortner

Max-Planck-Institut für Physik

ATLAS-Besprechung, 10.07.2006

Drift Velocity and r(t) Relationship

Needed for track reconstruction:

• drift radii r_1, \ldots, r_6 .

Measured quantities:

- drift times t_1, \ldots, t_6 .
- \rightarrow Needed link:
 - r(t): space-time relationship or
 - $\dot{r}(t)$: drift velocity.

Accuracy Requirement for r(t)

- $r(t)/\dot{r}(t)$ changes with operating conditions, mainly magnetic field and temperature.
- Influence of r(t) on the magnetic field and temperature gradients inside a chambers can be corrected for.
- $\rightarrow\,$ Same operating conditions within a chamber.
 - Goal: redetermination/check of r(t) every hour.
 - A priori accuracy of r(t): ~200 μ m.
 - Required accuracy: 20 μ m.
- \Rightarrow Refinement of the initial r(t) by means of the chamber's data required (so-called "autocalibration").

Residuals as a Measure of the r(t) Accuracy

Definitions

- Straight tracks within a multilayer.
- $d_k :=$ track distance from the k-th anode wire hit.
- $r(t_k) :=$ drift radius of the k-th hit.

• Residual
$$\Delta(t_k) := r(t_k) - d_k$$

Values of the residuals

 $r(t) = r_{true}(t) + \epsilon(t)$ implies:

•
$$d_k \rightarrow d_{k,true} + \delta_k$$

• $\Delta(t_k) \rightarrow$? (answer on the next slide)

Residuals as a Measure of the r(t) Accuracy

Dependence of $\Delta(t_k)$ on $r(t) = r_{true}(t) + \epsilon(t)$

Case 1: Large angular spread of the tracks, many hits.

•
$$< \delta_k > \rightarrow 0.$$

 $\Rightarrow < \Delta(t_k) > = < r(t_k) - d_k > \rightarrow \epsilon(t_k).$
 $\Rightarrow r_{true}(t) = r(t) - < \Delta(t) > (\underline{\text{conventional approach}}).$

Case 2: Small angular spread of the muon tracks.

•
$$<\delta_k>
eq 0$$
 usually.

- $\delta_k = \delta_k(\epsilon(t_1), \dots, \epsilon(t_n))$ (*n*: number of track hits).
- $\Delta(t_k) = \sum_{l=1}^{n} M_{k,l} \epsilon(t_l)$ to first order. $M_{k,l}$ can be calculated analytically.

The Analytic Autocalibration Approach

Problem

•
$$rank(M_{k,l}) = n - 2$$
 except for special configurations.

$$\Rightarrow$$
 Can't solve $\Delta(t_k) = \sum_{l=1}^n M_{k,l} \epsilon(t_l)$ on a single track basis.

Solution

- Use a set of tracks.
- Parametrize ε(t) as a linear combination of base functions: ε(t) = ∑ ρ=0 αpup(t) =: εα(t).
 Determine α = (α1,..., αP) by minimizing

$$X^{2} := \sum_{tracks} \frac{\left[\Delta(t_{k}) - \sum_{l=1}^{n} M_{k,l} \epsilon_{\alpha}(t_{l})\right]^{2}}{\sigma^{2}(t_{k})}.$$

Basis of the approach: geometrical constraints.

Results from earlier ensemble tests outside ATHENA

Required r(t) accuracy achievable with about 2000 tracks.

References

For further details please consult:

- M. Deile, Optimization and Calibration of the Drift-Tube Chambers for the ATLAS Muon Spectrometer, CERN-THESIS-2003-016.
- M. Deile et al., Autocalibration: The Influence of the Track Incidence Angles and a New Method, ATL-MUON-2004-02.
- O. Kortner, Performance of the Analytic Autocalibration Method, talk February 2005.

First Tests of the Algorithm in ATHENA

Status

- Algorithm working with release 12.
- Algorithm will be part of release 13.
- Features of the algorithm:
 - *ϵ*_α(t) as a linear combination of Legendre or Chebyshev polynomial or a polygon;
 - returns a quality estimate for the final r-t relationship.

First Tests of the Algorithm in ATHENA

Data set:

- Single muons, μ^- at $p_t = 6 \text{ GeV/c.}$
- \sim 2000 tracks per calibration region.

Correction function: Polygon with 15 equidistant r points. Initial r(t) relationship:

- Characteristic initial r(t).
- Accuracy: $\sim 100 \ \mu m$.

Results of the First Performance Test

Region with many geometrical constraints

Observations

- Achieved r(t) accuracies between 10 and 30 μm.
- High accuracy over a large drift-time interval.
- Optimization needed at t_{min} and t_{max} .

Results of the First Performance Test

Region with few geometrical constraints

Red track configuration:

 $r_{1,red} = r_{2,red} = r_{3,red}$

 \Rightarrow **no** sensitivity of the residuals to a wrong r(t).

Green track configuration:

 $r_{k,green} \neq r_{k,blue}$,

 $\Rightarrow \text{Limited sensitivity of the residuals}$ to a wrong r(t).

Results of the First Performance Test

Region with poor geometrical constraints

Observations

- Algorithm not able to resolve the ambiguities at 30° with a 3-layer mulitlayer.
- Optimization mandatory!

Analytic autocalibration – status and plans

- Autocalibration part of ATHENA.
- First tests indicate proper functioning of the code.
- But optimization for tracks at 30° in 3-layer multilayers mandatory.
 - Next test of the algorithm: running on DC-3 data with temperature and magnetic-field effects.