

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Sandra Horvat

Status of the Higgs analyses at MPI

ATLAS MPI Meeting • MPI • 18.09.2006

Overview of the Higgs searches at MPI

SM Higgs decay channels at LHC:

SM Higgs:

Motivation: cover the whole allowed mass region.

- $(\underline{tt}, W, VBF) \underline{H} \rightarrow b\overline{b}$
- VBF $H \rightarrow \tau \tau \rightarrow (\ell \nu \nu)(anything)$
- VBF $H \rightarrow WW \rightarrow (\ell \nu)(anything)$

•
$$H
ightarrow ZZ^{(*)}
ightarrow (\ell^+ \ell^-)(\ell^+ \ell^-)$$

Neutral MSSM Higgs:

Motivation: expertise in $\mu\text{-}$ and $\tau\text{-}$ reconstruction.

•
$$\frac{A/H \to \mu^+ \mu^-}{A/H \to \tau^+ \tau^-} \to (\ell \nu \nu) (anything)$$

Related software development:

- b-tagging
- <u>*τ*-identification</u> (using TopoClusters)
- forward jet reconstruction (VBF channels)

SM	$(tt, W, VBF)H \rightarrow b\overline{b}$	S.Kotov, J.Yuan	Complete	FULL/FAST
SM	$(VBF)H \rightarrow \tau\tau \rightarrow (\ell 2\nu)(\ell 2\nu)$	S.Horvat, S.M-Möck, C.Valderanis	Complete	FAST
SM	$(VBF)H \rightarrow \tau \tau \rightarrow (\ell 2\nu)(h \nu)$	M.Groh, S.Horvat	Validation	
SM	$(VBF)H \rightarrow WW \rightarrow (\ell\nu)(\ell\nu)$	S.Horvat, S.Kaiser, O.Kortner	Validation	
SM	$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$	N.Benekos, S.Horvat, O.Kortner	Complete	FULL
MSSM	$(bb)A/H \rightarrow \mu\mu$	G.Dedes, S.Horvat	Complete	FULL/FAST
MSSM	$(bb)A/H \rightarrow \tau \tau$	G.Dedes, S.Horvat	Validation	

Complete analyses (completed before the CSC data production):

- Using FAST (Atlfast) and/or FULL (V10.0.4, "Rome-Layout") detector simulation.
- Cuts optimized for the low-luminosity up to $\mathcal{L}=30~{\rm fb}^{-1}$.
- Pile-up, cavern background and misalignment still missing, to be done with the CSC data (Dec 2006).

Validation:

• Preparation for the studies on the CSC data (V11.0.42, V12.0.2).

Complete: $ttH, H \rightarrow b\bar{b}$

• S.Kotov, Higgs Working Group Meeting, 19.07.2006.

Performance of different jet reconstruction algorithms:

	Particle	tŦH		tībb	
	i di ticic	Cone4	Cone7	Cone4	Cone7
Poc officionay %	b-jet	52.2	42.9	47.1	41.5
Rec. efficiency, 70	light jet	72.9	54.4	76.0	62.1
Mean Ap. /p. shift %	b-jet	-10.5	0.4	-9.6	0.9
Viean $\Delta p_t / p_t$ sinct, 70	light jet	-8.2	3.4	-9.0	2.8

• Cone4: highest efficiency, but an additional jet energy recalibration is needed.

After recalibration:

- Mass shift reduces, -23 GeV \rightarrow -3 GeV
- Higgs peak broadens, 19 GeV → 27 GeV
- Significance = 2.5

Complete: VBF $H \rightarrow \tau^+ \tau^- \rightarrow (\ell \nu \nu) (\ell \nu \nu)$

• C.Valderanis, LHC-D Higgs Meeting, 07.03.2006.

	H 120	QCD	QCD	EW	tt	WW
		$Z \rightarrow \tau \tau$	$Z ightarrow$ ee, $\mu\mu$	$Z \rightarrow II$		
all	1089	40 M	645 M	15 M	1,56 M	210.000
$N_l \geq 2, N_{Jet} \geq 2$	289	790.464	37 M	965.696	576.198	21.730
E _T miss	152	57.573	103.950	67.582	390.324	8.384
×I	122	27.300	44.586	6.868	39.426	294
$\Delta R(2I)$	114	24.625	39.767	4.407	16.598	110
$\Delta \eta(2j)$	52	1.582	2.489	316	2.468	5
m _{ii}	46	819	1.180	219	1449	2
Jet veto	33	103	159	12	17	0,5
ΔM	15,5	4,4	0,5	0	1,8	0,06

Complete: $H \rightarrow ZZ^{(*)} \rightarrow (\ell^+ \ell^-)(\ell^+ \ell^-)$

• S.Horvat, Higgs Working Group Meeting, 19.07.2006.

	$m_H = 130 \text{ GeV}$	$m_H = 160 \text{ GeV}$	$m_H = 180 \text{ GeV}$	$m_H = 280 \text{ GeV}$
	$(\delta m = \pm 5 \text{ GeV})$	$(\delta m = \pm 6 \text{ GeV})$	$(\delta m = \pm 7 \text{ GeV})$	$(\delta m = \pm 20 \text{ GeV})$
N _{signal}	17.2±0.1	20±1	21.4±0.3	49.1±0.1
N _{ZZ}	8.7±0.3	8.8±0.3	21.0±0.5	31.1±0.6
N _{Zbb}	2±2	2±2	1±1	0±2
N _{tī}	0±0.4	0±0.4	0.5±0.4	0±0.4
Significance				
(no K-factors)	5.0±0.3	$5.5 {\pm} 0.5$	4.5±0.2	8.7±0.4

Complete: $(bb)A/H \rightarrow \mu^+\mu^-$

• G.Dedes, Higgs Working Group Meeting, 18.01.2006.

Significance	150 GeV	200 GeV	300 GeV	350 GeV	450 GeV
ATLFAST	12.1	4.6	5.1	2.4	1.1
FULL			4.4		

Validation stage: $(bb)A/H \rightarrow \tau^+\tau^-$

• G.Dedes, Higgs Working Group Meeting, 19.07.2006.

Statistics for the $t\bar{t}$ -background still too small.

Related Software: τ -identification

• M.Groh and S.Horvat, Tau Meeting, 27.06.2006

TopoClusters: possible improvements at low p_T .

Plans

- Prepare the analyses for the CSC data.
- Include the trigger studies.
- Include additional detector effects (pile-up, misalignment ...).
- Study the possibilities to estimate the background from the data. (energy calibration, cross-sections...)

Commitments to the Higgs Working Group:

- Contribution to 6 Higgs CSC notes related to mentioned analyses.
- Editing and coordination of the work for the ${\it A}/{\it H} \rightarrow \mu\mu$ CSC note.

 $\label{eq:csc} \begin{array}{c} \downarrow \\ \text{CSC data production,} \\ \text{validation and development of reconstruction algorithms,} \\ \text{optimization of analyses} \end{array}$

Deadline for the first drafts of CSC notes: end of December 2006 !

Remarks on the Monte-Carlo Production

Before the CSC era:

All data sets have been produced privately at FZK, RZG and MPI,

since no official (centrally produced) bug-free data were available.

- ATLFAST: 70×10⁶ events
- FULL SIMULATION (V10.0.4): 1.5×10^6 events \equiv 105 days-100 CPU

Waiting for the stable CSC production:

Cetral CSC data production is far behind the schedule: \Rightarrow Preparation for the CSC studies and commitments to the HiggsWG are impossible without (at least a partial) private production.

ullet estimated total number of CPU-s needed: ${\sim}180$

FZK not so helpfull anymore, loaded with jobs from the central production.

• need a GRID-certified site to register the produced data