Physics Background Simulation for PXD

Martin Ritter, Kolja Prothmann

PXD Meeting, 11 January 2010

- several important aspects: Occupancy, Radiation Damage, Data reduction scheme
- currently 4 step process: Generation (see C. Kiesling talk),
 Filtering, Merging, Simulation

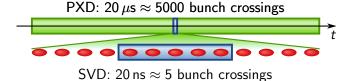
Simulation of physics background for the PXD

2. Filtering

- read hepevt-files
- cut events without any particle in the acceptance range

Standard Cuts

$$17^{\circ} \le \theta \le 150^{\circ}$$
 and $p_t \ge 5 \,\mathrm{MeV}$


optional: boost events

Standard Boost

 $EHER = 7 \,GeV$, $ELER = 4 \,GeV$, crossing angle = 83 mrad

- write remaining events to file
- calculate adjusted cross section

Simulation of physics background for the PXD

3. Merging

- ightharpoonup calculate mean number of events per crossing μ
- for each crossing with timestamp t_c , $t_c = 0$ at center read $poisson(\mu)$ random events from hepevt file
 - gaussian smearing of vertex by current design bunch size
 - gaussian smearing of t_c by bunch length/c
 - optional: boost events
 - optional: cut on acceptance
- write merged events to file for simulation

Simulation of physics background for the PXD

4. Simulation

- Simulate events using ILC Mokka/Marlin tool-chain
- Mokka modified to allow input of specific vertices and timing information
- SVD/PXD-Digitizer modified to allow specification of time-windows: all hits outside specified time-window will be ignored
- Simulation ready, needs testing

Conclusions

- Generation under evaluation using various generators.
- Filtering and Merging implemented, currently under testing
- Simulation ready, currently testing