Status and Results of the MAGIC-1 Telescope

MPI Project Review 2006

Hendrik Bartko, MPI Munich for the MAGIC collaboration

The IACT principle

Ground Based y-Ray Instruments

The MAGIC Collaboration

Major Atmospheric Gamma-Ray Imaging Cherenkov Telescope

Collaboration: ~150 physicists & technicians, 19 institutes, 9 countries:

IAA Granada, IFAE Barcelona, UAB Barcelona, U Barcelona, HU Berlin, IAC La Laguna, U.C. Davis, U. Dortmund, U. Lodz, UCM Madrid, MPI München, INFN/ U. Padua, INFN Pisa / U. Siena, INRNE Sofia, INFN Trieste/U. Udine, Obs. Tuorla, U. Würzburg, Yerevan Phys. Institute, ETH Zürich

Project goal: build lowest threshold IACT to observe in the unexplored spectral "gap" between ~30 and 250 GeV.

The MPI MAGIC Group

26 Physicists

 Director: M. Teshima (Spokesperson of MAGIC),
 Senior scientists: F. Goebel (MAGIC-2 project manager), R. Mirzoyan (Chair Collab. board), T. Schweizer (Technical Coordinator), R. Bock, E. Lorenz, W. Wittek (emeriti)
 Postdocs: E. Carmona, N. Galante, P. Majumdar, J. Ninkovic, K. Shinozaki
 PhD students: H. Bartko, M. Garczarczyk, M. Hayashida, C. Hsu, T. Jogler, D. Mazin, C. Merck, S. Mizobuchi, N. Otte, T. Saito, R. Wagner
 Diploma students: M. Fuchs, R. Kosyra, A. Romaszkiewicz

Engineers/Technicians

from electronics/mechanical departments

Subsystems of MAGIC

Light weight 17 m diameter parabolic reflecting surface (240 m²) space frame from high reflective diamond milled aluminum mirrors carbon fiber Active mirror control reinforced plastic (PSF: 90% of light in tubes for fast 0.1° inner pixel) repositioning 3.5° FOV camera 576 enhanced QE PMTs (QE_{max}= 30%) Analog signal transmission via optical fibers 2-level trigger system & 300 MSamples/s FADC system 2006: Upgrade to 2GSamples/s

Published Sources of Cycle 1

MAGIC catalog was authorized by IAU: "MAGIC JHHMM+DDMM"

H. Bartko, MPI f. Physik, Munich

Crab - The Standard Candle

Crab Pulsar

HESS J1813-178

Shell-type or Composite SNR?

HESS J1834-087

extended source -- SNR molecular cloud interaction

Published: ApJL 643 (2006) 53

Galactic Center

source unknown - black hole? SNR? PWN?

Published: ApJL 638 (2006) 101

Galactic Center

observation time: 17 h

zenith angle: 58-62 deg

June/July 2005

10⁴

E [GeV]

LS I +61 303

Discovery of variable γ -Ray Emission

Published: Science 312 (2006) 1771

H. Bartko, MPI f. Physik, Munich

Variable γ-Ray Emission from LS I +61 303

X-Ray binary system of Be star and black hole/neutron star 26.5 days orbital period distance ~2kpc

2006/12/19

H. Bartko, MPI f. Physik, Munich

LSI+61 303: Models

- Microquasar: rel. electrons (& hadrons) from accretion powered jets
- Binary Pulsar: Interaction between outflow disk and pulsar winds

Extra Galactic Sources: AGNs

M87

2006/12/19

Absorption of γ -Rays in the Universe

Pair creation: $\gamma + \gamma \rightarrow e^+ + e^-$

The SSC Framework

Higher z \rightarrow Higher source luminosity \rightarrow Lower IC peak \rightarrow softer spectrum

X-ray intensity at 1keV PG 1553 $6.5 \ \mu$ Jy z~0.3 Mrk421 $9.9 \ \mu$ Jy z=0.03 Mrk501 $9.4 \ \mu$ Jy z=0.03 PG1553's source luminosity ~100 x Mrk

AGN Mrk421 (z=0.031)

ApJ submitted, astro-ph/0603478

Long exposure: Dec 2004 - Apr 2005

- 25.6 h, over 7000 excess events
- medium flux state (0.5-2 Crab)

AGN Mrk421 (z=0.031)

Self Synchrotron Compton Model

high energy electrons & magn. fields

- X-rays: synchrotron radiation
- VHE γ-rays: inverse Compton scattering off synchrotron photons

AGN Mrk501 (z=0.034)

Giant Flares in July 2005

Gamma-ray Light Curve (MAGIC Telescope

Immediate IAU Circular

AGN 1ES 2344+514 (z=0.044)

high significance observation in non-flaring state

Submitted: ApJ (2006)

AGN marginally detected by previous IACTs either in short flaring episode (Whipple) or in long exposure observation (HEGRA) MAGIC: steady state emission with high significance observed

2006/12/19

flare

AGN 1ES1218+304 (z=0.182)

First new source discovered with MAGIC

Published: ApJL 642 (2006) 119

First MAGIC DISCOVERY

- Jan 2005, 8.2 h
- 6.4 σ significance
- F(>120GeV) = 13% Crab
- spectral index: -3.0 ± 0.4

(8.1±2.1) • 10⁻⁷

Soft Energy Spectrum

E [GeV]

E 250 GeV -3.0 ± 0.4

10³

ph

TeV s m²

10²

10-4

10-5

10⁻⁶

107

10-8

dN/dE [ph TeV¹ s⁻¹ m⁻²]

H. Bartko, MPI f. Physik, Munich

Distance of PG 1553+113

- no spectral line found \rightarrow only lower limit: z > 0.09
- assume: EBL (conservative) + z
- require: dN/dE ~ E- Γ , Γ > 1.5 \rightarrow upper limit on z MAGIC +HESS data: z < 0.74
- improved method (Mazin&Goebel, astro-ph/0611817): z < 0.42

GRB observation by MAGIC

~10sec GRB trigger Satellite to MAGIC ~50sec/180° MAGIC slewing time future: ~39sec/180° 30

Upper limits for 9 GRBs in VHE γ-rays

- fast response of MAGIC
 no gamma-ray emission seen
- wait for stronger GRB
- GRB 050713a published: ApJL 638 (2006) 101

	Energy	Fluence Upper Limit			
	[GeV]	$[\mathrm{ph}~\mathrm{cm}^{-2}~\mathrm{keV}^{-1}]$	$[erg \ cm^{-2}]$	C.U.	
	151.3	2.64×10^{-15}	9.67×10^{-8}	0.41	
	212.8	6.57×10^{-16}	4.76×10^{-8}	0.25	
GRB060121	273.7	2.13×10^{-16}	2.56×10^{-8}	0.15	
	367.7	4.47×10^{-16}	9.66×10^{-8}	0.69	
	636.4	4.84×10^{-17}	3.14×10^{-8}	0.31	
GRB060203	151.5	1.10×10^{-14}	4.03×10^{-7}	1.71	
	219.5	5.07×10^{-16}	3.91×10^{-8}	0.21	
	274.0	1.57×10^{-16}	1.88×10^{-8}	0.11	
	365.3	3.54×10^{-16}	7.56×10^{-8}	0.54	
	639.5	4.45×10^{-17}	2.91×10^{-8}	0.29	
GRB060206	85.5	1.23×10^{-14}	$1.44 imes 10^{-7}$	0.44	
	139.9	9.83×10^{-16}	3.08×10^{-8}	0.13	
	210.3	5.50×10^{-16}	3.89×10^{-8}	0.20	
	269.2	3.65×10^{-16}	4.23×10^{-8}	0.25	
	355.4	6.47×10^{-16}	1.31×10^{-7}	0.91	
	614.0	2.88×10^{-17}	1.74×10^{-8}	0.17	

	Energy	Fluence Upper Limit			
	[GeV]	$[ph \ cm^{-2} \ keV^{-1}]$	$[erg \ cm^{-2}]$	C.U.	
GRB050421	212.5	5.26×10^{-16}	3.80×10^{-8}	0.20	
	275.8	3.64×10^{-16}	4.43×10^{-8}	0.27	
	366.4	5.21×10^{-17}	1.12×10^{-8}	0.08	
	658.7	2.07×10^{-17}	1.41×10^{-8}	0.14	
	152.3	1.67×10^{-15}	6.21×10^{-8}	0.27	
	219.3	2.83×10^{-15}	2.18×10^{-7}	1.15	
GRB050502	275.8	1.13×10^{-15}	1.37×10^{-7}	0.83	
	360.8	7.57×10^{-17}	1.58×10^{-8}	0.11	
	629.1	5.62×10^{-17}	3.56×10^{-8}	0.35	
	212.9	2.03×10^{-15}	1.48×10^{-7}	0.76	
CDDososos	275.1	2.66×10^{-15}	3.22×10^{-7}	1.94	
GRB050505	363.6	5.28×10^{-16}	1.11×10^{-7}	0.79	
	704.1	1.85×10^{-17}	1.46×10^{-8}	0.15	
	215.1	1.04×10^{-15}	$7.69 imes 10^{-8}$	0.40	
CPR050500a	273.4	1.39×10^{-15}	1.67×10^{-7}	1.00	
GRE050509a	362.8	7.74×10^{-16}	1.63×10^{-7}	1.15	
	668.5	1.69×10^{-16}	1.21×10^{-7}	1.22	
	169.9	3.63×10^{-15}	1.68×10^{-7}	0.76	
	212.5	1.12×10^{-15}	8.08×10^{-8}	0.42	
GRB050713a	275.8	2.07×10^{-15}	2.52×10^{-7}	1.52	
	366.4	3.33×10^{-16}	7.16×10^{-8}	0.51	
	658.7	2.24×10^{-17}	1.55×10^{-8}	0.15	
	85.5	9.06×10^{-15}	1.06×10^{-7}	0.32	
	140.1	3.00×10^{-15}	9.42×10^{-8}	0.38	
GRB050904	209.9	2.18×10^{-15}	1.53×10^{-7}	0.79	
GILD00004	268.9	5.82×10^{-16}	6.74×10^{-8}	0.40	
	355.2	5.01×10^{-16}	1.11×10^{-7}	0.71	
	614.9	1.26×10^{-16}	7.63×10^{-8}	0.73	

2006/12/19

H. Bartko, MP

First Data: Crab Nebula

300 MSamples/s FADCs

2 GSamples/s MUX-FADCs

gamma/hadron separation optimized for old system

New High QE PMTs

- Hamamatsu has announced PMTs with peak QE of 43 % !
- stimulated by requirements of MAGIC
- chance to replace MAGIC PMTs?

Photocathode	QE at peak	wavelength	Type Availability		
	Min.	Тур.			
Ultra Bialkali (UBA)	38 %	43 %	Metal Package PMT (TO-8 Type, ⊡28 mm Type PMT)		
Super Bialkali (SBA)	32 %	35 %	Metal Package PMT (TO-8 Type, ⊡28 mm Type PMT) φ28 mm to φ76 mm Head-on PMT (Glass Bulb Type)		

Conclusions

- First MAGIC telescope is taking data regularly since fall 2004
- 5 galactic sources are observed, variable emission from a $\gamma\text{-ray}$ binary discovered
- 7 extragalactic sources are observed 2 discoveries by MAGIC
- distant sources -> study the gamma attenuation by e⁺/e⁻ pair creation (extragalactic background light)
- rapid flux variations -> study quantum gravity effects
- GRBs: 9 fast follow-up observations are carried out no detection of signals so far
 several publications + more data to be analyzed
- DAQ upgrade with ultra-fast MUX-FADC system ٠
- second MAGIC telescope under construction • (talk by F. Goebel)

Backup

BAT [count/s]

GRB 050713a

E²dN/dE [erg s⁻¹ cm⁻²] ₉01 0. ₈01 0.

10⁻⁹

10⁻¹⁰

SWIFT + Konus-Wind

GRB050713a

MAGIC 95% C.L. Upper Limits 90 s prompt emission

dR∞E^{-2.5}

Published: ApJL 638 (2006) 101

fast response of MAGIC no gamma-ray emission seen

The MAGIC Telescope at the Roque de los Muchachos Observatory

H, Bartko, MPI f. Physik, Munich

Status of MAGIC

- October 2003: Inauguration
- until August 2004: Commissioning
- July 2004: Installation of last Mirrors
- September 2004: Start of regular data-taking
- June 2005: start of cycle 1 observations
- data-taking efficiency gradually improving, reaching 80-90%
- in 2005 some weather hazards
- 2006 good weather conditions
- Dec 2006: 12 sources published more results in pipeline

Infrastructure Updates in 2006

- fire protection:
 - cleared the bushes around the telescopes and around cable tray
 - plan to install a water tank close to upper road, water pipe and probably hydrant for firemen
- road paving: will pave the path to control house with asphalt allows snow plough to clean the house area
- humidity protection: paint the house soon with special protective paint
- power line: installed cable channel from ORM main power line plus a transformation center

Active Mirror Control

- Since May 2006: significantly improved optical PSF
- single mirror facet reflections under full control (trivial to change position and focal length of whole mirror)
- full mirror recalibration in ~15 min using a bright star
- MAGIC very stable (ever need to readjust ???)

New vs. Old FADCs

Parallel read-out of new and old FADC systems -> cross-checks, performance validation, software adaptation

H. Bartko, MPI f. Physik, Munich

Status of Observations

Observation cycle 1: June 2005 - June 2006

- dark night: 955 h observed / 1595 h available
 - = 60 % efficiency (bad weather, technical problems)
- moon shine: 205 h observed

Observation cycle 2: June 2006 – May 2007 (numbers till Nov.) • dark night: 409 h observed / 653 h available

= 63 % efficiency (bad weather, technical problems) • moon shine: 122 h observed

-> 1000 h dark night observation time per year + moon time = 50 sources * 20 h / source, for min. fluxes of 3.2% Crab

MAGIC Source Catalogue (December 2006)

MAGIC catalog was authorized by IAU: "MAGIC JHHMM+DDMM"

MAGIC Source	R.A. J2000	Dec J2000	feature/z	Other Name	Status	Cit.
MAGIC J0240+6113	02 40 31.7	+61 13 41	γ−ray binary	LSI+61 303	Science 312, 1771 (2006)	27
MAGIC J0534+2201	05 34 31	+22 01	PWN	Crab Nebula	in analysis	
MAGIC J1745-2902	17 45 20	-29 02	???	G.C.	ApJ Letters 638, 101 (2006)	23
MAGIC J1813-1748	18 13 27	-17 48 20	SNR/PWN?	HESS J1813-178	ApJ Letters 613, 41 (2006)	18
MAGIC J1834-0842	18 34 27	-08 42 40	SNR/PWN?	HESS J1834-087	ApJ Letters 643, 53 (2006)	7
MAGIC J1101+3828	11 01 40.3	+38 28 34	HBL (0.0308)	Mrk421	astro-ph/0603478	5
MAGIC J1133+7026	11 33 32.7	+70 26 00	HBL (0.0458)	Mrk180	ApJ Letters 648, 105 (2006)	4
MAGIC J1221+3010	12 21 21.9	+30 10 37	HBL (0.182)	1ES1218+30.4	ApJ Letters 642, 119 (2006)	3
MAGIC J1555+1111	15 55 43.1	+11 11 24	HBL (>0.2)	1ES1553+113	astro-ph/0606161	5
MAGIC J1652+3950	16 52 11.7	+39 50 07	HBL (0.0337)	Mrk501	in analysis	
MAGIC J1959+6508	19 59 59.9	+65 08 55	HBL (0.047)	1ES1959+650	ApJ 639, 761 (2006)	6
MAGIC J2347+5142	23 47 04.8	+51 42 18	HBL (0.044)	1ES2344+514	in analysis	
MAGIC J1534+2330	15 34 57.21	+23 30 09	flux u.l.	Apr 220	astro-ph/0611786	
MAGIC J2122+7704	21 22 09.53	+77 04 29	flux u.l.	GRB050713A	ApJ Letters 641, 9 (2006)	4
MAGIC J					in analysis	

Crab pulsar

- most energetic pulsar ($L_m = 5 \times 10^{38} \text{ erg s}^{-1}$)
- only pulsar whose pulse phase is the same in all wavelengths.

) Central Pixel: Optical Pulse 🏹

- modified central pixel for optical DC-light measurements
- simultaneous phase ٠ measurement of optical pulse
- assess MAGIC clock

installed and tested with Crab-Pulsar in March '05.

Extragalactic sources

Spectral indices of new sources range 3~4

Source	Redshift	Spectral Index Type		First Detection	Confimation	
M87	0.004	2.9	FR I	-	HEGRA	HESS
Mkn 421	0.031	2.2	E.			
Mkn 501	0.034	2.4	E		BL Lac of	ojects
1ES 2344+514	0.044	2.9	E	4.5		
Mkn 180	0.045	3.3	E	4.0		
1ES 1959+650	0.047	2.4	E	4.0	•	
PKS 2005-489	0.071	4.0	e de x	3.5	New Sc	urces
PKS 2155-304	0.116	3.3	a In	3 0		
H1426+428	0.129	3.3	n setra	3.0 ×		
H2356-309	0.165	3.1	Bpe	2.5		
1ES 1218+304	0.182	3.0	E	20	•	
1ES 1101-232	0.186	2.9	B	2.0		
PG 1553+113	0.3	4.0	E	1.5 4	0.1)2 03 04
2006/12/19		H. Bartko, N	NPI f	·	Redshift F	Parameter z

MUX Performance Tests

- successful test of 32 MUX-FADC channels in September 2004: H. Bartko et al., 2005, NIM, A548, 464.
- commissioning of the full MUX-FADC system in progress

