

ZEUS Status Report

Daniel Kollár

MPI Project Review 2006

December 18 - 19, 2006

HERA @ DESY

HERA

- an **electron-proton collider** at DESY, Hamburg

- delivered 197 pb^{-1} in 2006 (as of December 17)
- ZEUS gated 154 pb⁻¹ \rightarrow 78% efficiency
- polarization $\sim 40\%$

The MPI ZEUS team

Responsible Director:	Allen C	aldw	vell									
Project Leader: Iris Abt												
	1	11	111	IV	V	VI			IX	X	XI	XII
Post-docs												
Claudia Büttner												
Daniel Kollár												
William Schmidke												
Guests												
Halina Abramowicz (Tel Aviv)												
Aharon Levy (Tel Aviv)												
Students												
Juraj Šutiak												
Vladimir Drugakov (Zeuthen)												
Ronen Inghir (Tel Aviv)												
Amir Stern (Tel Aviv)												
Shima Shimizu (Tokvo)												
							1					

Starting in January 2007: 1 Post-doc (Burkard Reisert), 2 PhD Students (Panjab University)

Responsibilities: (taken over from Columbia group)

	Luminosity Spectrometer	W. Schmidke, J. Šutiak, V. Drugakov						
	BCAL	W. Schmidke						
Ar	nalyses:							
	Cross-Section Measurement at High \rightarrow <i>finished, more to come</i>	3jorken-x	C. Büttner					
	Charged-Current Cross-Section → finished		J. Šutiak					
	F_2 at High y and F_L \rightarrow ongoing		D. Kollár					
	Leading Neutrons \rightarrow <i>finished</i>		W. Schmidke					

Luminosity Spectrometer

W. Schmidke, J. Šutiak, V. Drugakov

Dipole magnet B=0.5T

Two independent luminosity monitors:

- Luminosity Spectrometer (since 2003) \Rightarrow & Photon Calorimeter
- measuring the rate of bremsstrahlung photons \Rightarrow created in the Bethe-Heitler process in the interaction region
 - the cross section is well known (QED process)
 - high rate \Rightarrow high statistics \Rightarrow accurate

ZEUS Luminosity Spectrometer

Movina

Photon beam-pipe

collimator

Upper detector

8cr

Cross-Section at High x C. Büttner

Motivation:

- $\, \stackrel{>}{\rightarrow}\,$ Limited cross-section data at high Bjorken-x and high Q^2
 - BCDMS has measured F_2 up to x=0.75
 - ZEUS and H1 have measured F_2 up to x=0.65 before
- \Rightarrow PDF's are poorly determined at high x
 - sizeable differences and large uncertainties

Cross-Section at High x – Th Idea

C. Büttner

Main ideas:

- \Rightarrow high **x** high **Q**² event \rightarrow clean high-energy electron
- \Rightarrow measure Q^2 with the electron
- \Rightarrow however, **x** resolution very bad

therefore

- \Rightarrow for not too high **x**, reconstruct **x** from reconstructed jet
- \Rightarrow for very high **x**, jet partly lost in beam pipe
 - \rightarrow events above some x_{cut} (depending on Q^2) are counted to get an integral cross section

Measured cross-section comparison to the expectations from CTEQ6D

- ⇒ good agreement in previously measured region
- \Rightarrow data tend to lie above the expectations at highest **x**

- first fits show that data will have considerable impact on PDF's
- new PhD student should redo the analysis with the full HERA-II data

Motivation:

 \Rightarrow high luminosity polarized beams – both polarizations available in HERA-II data

CC – Polarization dependence J. Šutiak

total CC cross section has linear dependence on polarization

- right-handed cross-section limit
 - e⁻p: σ(P=1) < 7.1 pb with probability 0.95</p>
 - e⁺p: σ(P=1) < 9.9 pb with probability 0.95</p>

 $\sigma(P=1)/\sigma(P=-1) = 0.05$ $\sigma(P=-1)/\sigma(P=1) = 0.14$

 \Rightarrow

- \Rightarrow 2 methods to determine the W mass in SM
- \Rightarrow using the Q^2 dependence of the cross section, the coupling G_F is a free parameter

 \Rightarrow using the SM relation between M_w and $G_F \Rightarrow$ enhanced sensitivity to M_w

$$G_{F} = \frac{\pi \alpha}{\sqrt{2} (1 - \frac{M_{W}^{2}}{M_{Z}^{2}}) M_{W}^{2}} \frac{1}{1 - \Delta r} \qquad \qquad M_{W} = 81.05^{+0.29}_{-0.41} \text{GeV}$$

$$PDG \text{ values:} \qquad M_{W} = 80.403 \pm 0.029 \text{ GeV}$$

$$G_{F} = 1.16637 \pm 0.00001 \text{ GeV}$$

-2

CC – W_R mass limit J. Šutiak

 \Rightarrow left-right symmetric models allow right-handed W ($g_l = g_r$ in simplest models)

$$\frac{d\sigma}{dxdQ^{2}} = \frac{1}{128\pi x} \left[(1+P) \frac{g_{R}^{4}}{\left(Q^{2} + M_{W,R}^{2}\right)^{2}} + (1-P) \frac{g_{L}^{4}}{\left(Q^{2} + M_{W,L}^{2}\right)^{2}} \right] \tilde{\sigma}$$

Determine limits on the mass of W_{R} using Bayesian approach

- from total cross-section vs. polarization
 M_{w.R} > 190 GeV
- \Rightarrow using the Q^2 dependence of the cross section

M_{w,R} > 270 GeV

F_L – Motivation

D. Kollár

Neutral Current cross section:

$$\frac{d^{2}\sigma}{d x dQ^{2}}(x,Q^{2}) = \frac{2\pi\alpha^{2}}{xQ^{4}}[Y_{+}F_{2}(x,Q^{2}) - y^{2}F_{L}(x,Q^{2})]$$

$$Y_{+} = 1 + (1-y)^{2} \quad (at low Q^{2} \Rightarrow xF_{3} neglected)$$

$$F_{L} - related to cross section of longitudinally polarised photon \quad F_{L} = \frac{Q^{2}}{4\pi^{2}\alpha} \sigma_{L}$$

$$- in Quark-Parton Model (QPM): \quad \sigma_{L} = 0 \Rightarrow F_{L} = 0$$

$$- F_{L} \text{ nonzero in pQCD, in LO} \quad F_{L} = \frac{\alpha_{s}}{4\pi} x^{2} \int_{x}^{1} \frac{d z}{z^{3}} \left[\frac{16}{3}F_{2} + 8\sum e_{q}^{2} \left(1 - \frac{x}{z}\right)zg\right]$$
At small x the gluon density dominates

 \rightarrow F_{L} has never been measured at small x

Theory predictions

 \Rightarrow Relatively large uncertainties in gluon densities at small $m{x}$

 \Rightarrow Measurement of $F_{L} \rightarrow$ test of our QCD understanding

 \rightarrow important input to QCD fits of PDF's

mrst2001, mrst2002, mrst2003, mrst2004

F_L Measurement with ZEUS

Measurement at HERA

- ⇒ to separate F_2 and F_L one needs to measure the cross section at the same (x, Q^2) but different values of $y \Rightarrow$ different *s* (different beam energies)
- \Rightarrow we made a feasibility study of this measurement with the ZEUS detector
- \Rightarrow supposing scenario with low energy running (LER) at proton beam energy 460 GeV in the last three months of HERA (accumulating 10 pb⁻¹)

Key issues for ZEUS:

- \Rightarrow electron finding at low energies to reach high **y**
- background rejection
 - → photoproduction is the largest contribution to background especially at low energies

Uncertainties of $\mathbf{F}_{\!\scriptscriptstyle L}$ extraction

D. Kollár

Low Q²: small stat., big syst.

Note: F_{L} values set to 0.2 F_{2}

Largest systematics from: PhP background normalization and EF inefficiency High Q²: big stat., small syst.

- \Rightarrow we have presented the F_{i} study to the ZEUS Collaboration in February 2006
- ZEUS Collaboration has expressed interest in low energy running (LER) to the DESY PRC (meeting in May 2006)
- DESY PRC has recommended to the directorate that the LER takes place before the HERA shutdown
- ⇒ present status: waiting with the final decision of H1 (isolated high p_{τ} leptons issue) to come in the beginning of next year
- ⇒ HERA preparation for LER are ongoing
- LER expected to start in March 2007

F, at High y D. Kollár

ZEUS tasks: (lot of work before LER)

- work on detailed understanding of \Rightarrow
- electron finding,
- photoproduction background rejection,
- tracking
- \Rightarrow **F**, measurement at high y new region for ZEUS
- - allows developing techniques for F_{i} measurement

Conclusions

- ⇒ MPI ZEUS group is expanding
- \Rightarrow now took over some more hardware responsibilities
- ⇒ some analyses finished
- ⇒ bulk of the HERA-II data still to be analyzed

F_L measurement

- \Rightarrow our F_{L} study led to ZEUS Collaboration supporting the low energy running
- \Rightarrow we have initiated creation of new physics group in ZEUS \rightarrow the F_L group
- ⇒ MPI plays a leading role in the ZEUS F_L group → new Post-doc and PhD student are supposed to work on F_1 (starting in January)
- \Rightarrow even though HERA is going to shutdown at the end of June 2007, we're looking forward to the exciting measurements still to come (especially the F_{L} measurement)