Precision calculations for Higgs and gauge-boson production at the LHC and ILC

Stefan Dittmaier MPI Munich

Contents

- 1 Introduction
- 2 The processes $e^+e^- \rightarrow WW \rightarrow 4$ fermions
- 3 The decays $H \rightarrow WW/ZZ \rightarrow 4$ fermions
- 4 Conclusions

1 Introduction

Electroweak issues for the future (LHC/ILC):

- search for the Higgs boson
- study mechanism of electroweak symmetry breaking
- search for SUSY and other new physics
- top-quark physics
- further studies of gauge-boson self-interactions
- electroweak high-precision physics

1 Introduction

Electroweak issues for the future (LHC/ILC):

search for the Higgs boson

e.g. pp $\rightarrow q\bar{q}H$, pp $\rightarrow Q\bar{Q}H$, background procs, $H \rightarrow WW/ZZ \rightarrow 4f$

- study mechanism of electroweak symmetry breaking e.g. $e^+e^-/pp(WW \rightarrow WW) \rightarrow 6f$
- search for SUSY and other new physics e.g. $pp \rightarrow \tilde{q}\bar{\tilde{q}}, e^+e^- \rightarrow \tilde{\chi}^+ \tilde{\chi}^- / \tilde{\chi}^0 \tilde{\chi}^0$ with cascade decays to LSPs
- top-quark physics e.g. $e^+e^- \rightarrow t\bar{t} \rightarrow WbW\bar{b} \rightarrow 6f$
- further studies of gauge-boson self-interactions e.g. $e^+e^- \rightarrow WW \rightarrow 4f$, $e^+e^-/pp (WW \rightarrow WW) \rightarrow 6f$
- electroweak high-precision physics

e.g. $m_{
m t}$, $M_{
m W}$

Precise predictions for many-particle processes very important !

1 Introduction

Electroweak issues for the future (LHC/ILC):

search for the Higgs boson

e.g. pp $\rightarrow q\bar{q}H$, pp $\rightarrow Q\bar{Q}H$, background procs, $H \rightarrow WW/ZZ \rightarrow 4f$

- study mechanism of electroweak symmetry breaking e.g. $e^+e^-/pp(WW \rightarrow WW) \rightarrow 6f$
- search for SUSY and other new physics e.g. $pp \rightarrow \tilde{q}\bar{\tilde{q}}, e^+e^- \rightarrow \tilde{\chi}^+ \tilde{\chi}^- / \tilde{\chi}^0 \tilde{\chi}^0$ with cascade decays to LSPs
- top-quark physics e.g. $e^+e^- \rightarrow t\bar{t} \rightarrow WbW\bar{b} \rightarrow 6f$
- further studies of gauge-boson self-interactions e.g. $e^+e^- \rightarrow WW \rightarrow 4f$, $e^+e^-/pp (WW \rightarrow WW) \rightarrow 6f$
- electroweak high-precision physics

e.g. $m_{
m t}$, $M_{
m W}$

Precise predictions for many-particle processes very important !

 $\hookrightarrow \ \text{addressed in this talk}$

Existing precision calculations for many-particle processes at the LHC/ILC:

• with up to 5-point loop diagrams:

 $e^+e^- \rightarrow 4jets$ (QCD), $\nu \bar{\nu}H$, $t\bar{t}H$, $e\bar{e}H$, $\nu \bar{\nu}\gamma$, ZHH, ZZH, $\gamma \gamma \rightarrow t\bar{t}H$

NLO EW/QCD: Glover/Miller, Campbell et al., Bern et al., Dixon/Signer, Nagy/Trocsanyi, Weinzierl/Kosower, GRACE-loop, Denner et al., You et al., Chen et al., Zhang et al., Zhou et al. '96–'06

 $pp \rightarrow 3jets, \gamma\gamma+jet, V+2jets, t\bar{t}H, b\bar{b}H, t\bar{b}H^-, b\bar{b}V, HHH$

NLO QCD: Bern et al., Kunszt et al., Kilgore/Giele, Campbell et al., Nagy, Del Duca et al., Campbell/Ellis, Beenakker et al., Dawson et al., S.D. et al., Peng et al., Plehn/Rauch, Febres Cordero et al. '96–'06

 $H \rightarrow 4 \text{ fermions:}$ NLO QCD + EW for $H \rightarrow WW/ZZ \rightarrow 4f$ Bredenstein et al. '06

NLO QED for $H \rightarrow ZZ \rightarrow 4l$

```
Carloni-Calame et al. '06
```

- with up to 6-point loop diagrams (current technical frontier)
 - $e^+e^- \rightarrow 4$ fermions (CC): NLO EW Denner, S.D. Roth, Wieders, '05

 $e^+e^- \rightarrow \nu \bar{\nu} HH$: NLO EW GRACE-loop '05

 $gg \rightarrow gggg$:

NLO QCD amplitude "only"

Bern et al., Bedford et al., Berger/Forde, Bidder et al., Britto et al., R.K.Ellis et al., Xiao et al., '93–'06

Complications in corrections to many-particle processes

- huge amount of algebra, long final expressions
 - \hookrightarrow computer algebra / automization
- multi-dimensional phase-space integration
 - \hookrightarrow Monte Carlo techniques
- complicated structure of singularities and matching of virtual and real corrections
 - \hookrightarrow subtraction and slicing techniques
- treatment of unstable particles, issue of complex masses
 - \hookrightarrow "complex-mass scheme" recently proposed for higher orders

Denner, S.D., Roth, Wieders '05

- numerically stable evaluation of one-loop integrals with up to 5,6,... external legs
 - \hookrightarrow techniques that avoid inverse kinematical (e.g. Gram) determinants

Stuart et al. '88/'90/'97; v.Oldenborgh/Vermaseren '90; Campbell et al. 96; Ferroglia et al. '02; del Aguila/Pittau '04; Binoth et al. '02/'05; Denner/S.D. '02/'05; v.Hameren et al. '05; R.K.Ellis et al. '05; Anastasiou/Daleo '05

[But: most proposed methods not (yet?) used in complicated applications]

2 The processes $e^+e^- \rightarrow WW \rightarrow 4$ fermions

From LEP to the ILC

- cross-section measurement:
 - LEP2: $\Delta \sigma_{\rm WW} / \sigma_{\rm WW} \sim 1\%$
 - ILC: $\Delta \sigma_{\rm WW}/\sigma_{\rm WW} \lesssim 0.5\%$
- W-boson mass:
 - LEP2: $\Delta M_{\rm W} \sim 40 \, {
 m MeV}$ by reconstruction
 - ILC: $\Delta M_{\rm W} \sim 7 \,{
 m MeV}$ expected from threshold scan
- constraints on anomalous triple gauge-boson couplings:
 - LEP2: level of a few %
 - ILC: level of 0.1%
- $\Rightarrow~$ full NLO calculation for $e^+e^- \rightarrow 4\,\text{fermions}$ needed at ILC

Recent theoretical progress:

First complete $\mathcal{O}(\alpha)$ calculation for $e^+e^- \rightarrow \nu_\tau \tau^+ \mu^- \bar{\nu}_\mu$ leptonicDenner, S.D., Roth, Wieders '05 $u\bar{d}\mu^- \bar{\nu}_\mu$ semileptonic $u\bar{d}s\bar{c}$ hadronic final state

11 lowest-order diagrams: ("CC11 class")

 $\mathcal{O}(10^3)$ one-loop diagrams per channel:

• 40 hexagons

+ graphs with reversed fermion-number flow in final state

- 112 pentagons
- 227 boxes ('t Hooft–Feynman gauge)
- many vertex corrections and self-energy diagrams

Some numerical results:

Complete $\mathcal{O}(\alpha)$ corrections to the total cross section – LEP2 energies

• $|ee4f - DPA| \sim 0.5\%$ for $170 \, GeV \lesssim \sqrt{s} \lesssim 210 \, GeV$

• $|ee4f - IBA| \sim 2\%$ for $\sqrt{s} \lesssim 170 \, GeV$

\hookrightarrow agreement with error estimates

of "double-pole approximation" (DPA) and "improved Born approximation" (IBA)

W-production angle distribution at $\sqrt{s} = 500 \,\mathrm{GeV}$

Significant distortion of shape w.r.t. DPA at ILC energies

 \hookrightarrow Important for TGC studies at ILC

3 The decays $H \rightarrow WW/ZZ \rightarrow 4$ fermions

Importance of decays $H \rightarrow WW^{(*)}/ZZ^{(*)}$ at the LHC:

- LHC: most important Higgs decay channels for $M_{\rm H} \gtrsim 125 \,{\rm GeV}$
 - most precise determination of $M_{\rm H}$ via ${\rm H}{\rightarrow}{\rm ZZ}{\rightarrow}4l$ for $M_{\rm H}\gtrsim 130\,{\rm GeV}$
- ILC: measurements of branching ratios at per-cent level
 - full reconstruction of $\mathrm{H} \to \mathrm{WW}$ in semileptonic / hadronic final states

Theoretical description of $H \rightarrow WW^{(*)}/ZZ^{(*)}$:

- limitations of previous work:
 - $^{\diamond} \ \mathcal{O}(\alpha)$ corrections only for stable W's/Z's
 - ◊ off-shell W's/Z's only in lowest order
- new: Monte Carlo generator PROPHECY4f
 Bredenstein, Denr

for $H \rightarrow WW/ZZ \rightarrow 4f$ with EW+QCD corrections

Note: Monte Carlo generator with corrections needed

- If the kinematical reconstruction of Z's, W's, and H
 - (including radiative corrections, in particular γ radiation)
 - \hookrightarrow invariant-mass distributions
- If the verification of spin 0 and CP parity of the Higgs boson
 - \leftrightarrow angular and invariant-mass distributions Skjold, Osland '93; Barger et al.'93;

Nelson '88; Soni, Xu '93; Chang et al.'93; Skjold, Osland '93; Barger et al.'93; Arens, Sehgal '94; Buszello et al.'02; Choi et al.'03

Fleischer, Jegerlehner '81; Kniehl '91; Bardin, Vilenskii, Khristova '91

e.g. Hdecay (Djouadi, Kalinowski, Spira '98)

Bredenstein, Denner, S.D., Weber '06

Survey of Feynman diagrams for NLO EW and QCD corrections

Electroweak $\mathcal{O}(\alpha)$ corrections:

+ photon bremsstrahlung (final-state radiation only)

Results for leptonic final states

IBA = improved Born approximation (Coulomb singularity, one fitting constant, leading effects for $M_{\rm H}, m_{\rm t} \gg M_{\rm W}$)

Angle between decay planes for $H \to ZZ \to e^-e^+\mu^-\mu^+$ G_μ -scheme

4 Conclusions

LHC and ILC physics requires precise description of multi-particle processes:

- final states from resonance processes (WW, $t\bar{t}$, $\tilde{q}\bar{\tilde{q}}$, $\tilde{\chi}\tilde{\chi}$, etc.)
- irreducible background

Progress of recent years enables NLO corrections to $2 \rightarrow 4$ processes:

- complex-mass scheme for treatment of unstable particles at NLO
- numerically stable tensor reduction via seminumerical and expansion methods

Presented phenomenological results:

complete NLO corrections to

- $e^+e^- \rightarrow WW \rightarrow 4$ fermions
 - \hookrightarrow needed to exploit full ILC potential in M_W measurement and TGC constraints
- H → WW/ZZ → 4 fermions (new event generator PROPHECY4f)
 → necessary for Higgs reconstruction and verification of quantum numbers

Further phenomenologically interesting results expected in the future

