Research and Development on

Frictional Muon Cooling

MPI Project Review 2006

December 18-19, 2006

Allen Caldwell <u>Daniel Kollár</u> Daniel Greenwald **Responsible Director**

Postdoc

Technical Support \rightarrow Diploma student

Why Muon Collider?

Electron collider	Hadron collider
clean environment - only e⁺e⁻	only two partons interact - the rest → QCD junk
 strong synchrotron radiation ⇒ large energy losses ⇒ large radii, linear collider (LEP ≈ 200 GeV) 	negligible synchrotron radiation ⇒ higher energy for the same radius (LHC ≈ 14 TeV)
energy of e ⁺ e ⁻ interaction known exactly	exact energy of qq interaction unknown - range of qq energies for a given pp energy
suitable for precision measurements	suitable for discoveries

Why Muon Collider?

Electron collider	Hadron collider
clean environment - only e⁺e⁻	only two partons interact - the rest → QCD junk
 strong synchrotron radiation ⇒ large energy losses ⇒ large radii, linear collider (LEP ≈ 200 GeV) 	negligible synchrotron radiation ⇒ higher energy for the same radius (LHC ≈ 14 TeV)
energy of e⁺e⁻ interaction known exactly	exact energy of qq interaction unknown - range of qq energies for a given pp energy
suitable for precision measurements	suitable for discoveries

Muon collider

Muon Collider

Problems

Muons decay with $\tau_{\mu} = 2.2 \,\mu s$

- → need a multi MW source
 2-16 GeV (10²² p/year)
 ⇒ large starting cost
- → large experimental background lots of high energy e^{\pm} from μ^{\pm} decay
- → limited time for cooling, bunching, and accelerating
 - ⇒ need new techniques

Muon cooling

 → emittance reduction of the µ beam by 10⁶ required for a collider

Frictional Muon Cooling

(similar idea first studied by Kottmann et al. at PSI)

- let muons pass through a slowing-down medium
- bring muons to kinetic energy
 T where dT/dx increases with energy
- apply const. accelerating *E* field resulting in
 equilibrium energy
- large dT/dx at low T
 - ⇒ low average density of stopping medium ⇒ GAS

- simulation of the whole muon collider front-end based on frictional muon cooling → cooling factor of 10⁷ simulated (NIMA 546, 356, 2005)
- experimental demonstration of frictional cooling is still necessary:
 Frictional Cooling Demonstration Experiment (FCD)
- demonstration of frictional cooling principle on protons
 → should work for any charged particle

MPI Project Review, December 18, 2006

FCD - Construction

MPI Project Review, December 18, 2006

Daniel Kollar

FCD - The Goal

MPI Project Review, December 18, 2006

Daniel Kollar

FCD - Status

Construction and HV grid

ready and tested for some time now

Detector & Read-out electronic

- Silicon Drift Detector (SDD) from HLL + in-house made read-out
- in spring 2005 it turned out we have to re-design our read-out from
 scratch → expected time required by the electronic dept. → 6 months

At present

- new read-out designed and working
- resolution improvement
- lot of improvements on filtering out the noise
- successful SDD operation with the HV grid ON at up to 20 kV

- testing and calibration with the ⁵⁵Fe source
- clean spectrum with two X-ray lines at 5.9 keV and 6.49 keV
- improvements on grounding, shielding, read-out and DAQ
- further improvement possible, aim is $\sim 200 \text{ eV}$

FCD - Proton source

- strong α source \rightarrow ²⁴¹Am (74 kBq)
- hydrogen rich plastic foil \rightarrow MYLAR
- free protons by e⁻ stripping from H atoms
- due to electric field protons will drift and eventually escape from the foil

FCD - Proton spectra

- energy spectra measured for different applied grid voltages with an α source covered with a 23 μ m MYLAR foil
- proton peak is moving with applied voltage

MPI Project Review, December 18, 2006

Daniel Kollar

- superconducting magnet commissioned and ready
- accelerating grid tested up to 90 kV
- gas pressure control system installed and tested

- we can produce and detect protons
- thorough understanding of the proton source
 Diploma thesis of D. Greenwald
 → Characterization of the proton source for the FCD experiment
- work on further resolution improvement
- once we fully understand the proton source, we move to the magnet
- demonstrate the frictional cooling