ATLAS Data Flow

LHC, ATLAS, Trigger+DAQ to Offline processing centres

Hans von der Schmitt

Proton-Proton collisions at LHC

From bunchcrossings to physics analyses

20.11.2006

ATLAS and data volumes

D712/me0-6406/97						
Inner Detector	Channels	Fragment size/kB	netic Ca	Muon Spectrometer	Channels	Fragment size/kB
Pixels	1.4x10 ⁸	60		MDT	3.7x10 ⁵	154
SCT	6.2x10 ⁶	110		CSC	6.7x10 ⁴	256
TRT	3.7x10 ⁵	307	Z	RPC	3.5x10 ⁵	12
				TGC	4.4x10 ⁵	6
K						LA C
Calorimeter	Channels	Fragment size/kB		Trigger		Fragment size/kB
LAr	1.8x10 ⁵	576	P	LVL1		28
Tile	10 ⁴	48	E		ATT	RAN
Useful rate to permanent storage:						
ATLAS event size: 1.5 MBytes			<mark>ູ 300 MB/sec</mark>			
140 Millionen electronic channels				🖝 3 PB/year		
via ~1600 readout links			Hade	go to offline reco+analysis		
nadronic Calorimeters						

Finding interesting events

 $\textbf{Higgs} \rightarrow \textbf{ZZ} \rightarrow \textbf{2e+2}\mu$

Finding interesting events

 $\textbf{Higgs} \rightarrow \textbf{ZZ} \rightarrow \textbf{2e+2}\mu$

Plus 23 min bias events

ATLAS: three-stage event selection (trigger)

LVL1-selection in hardware using <u>Calorimeter</u> data with coarse granularity and <u>Myon</u> <u>triggerchamber</u> data.

· Buffering at the detector

- LVL2 takes <u>Region of Interest</u> <u>Data</u> (ca. 2%) with full granularity and combines information from detectors; early rejection.
 - Buffering in ROBs
- Event Filter refines the selection: Event reconstruktion with full granularity, use of recent alignment- and calibration data.

Buffering in EB & EF

ATLAS: three-stage event selection (trigger)

ATLAS Trigger Level 1 (LVL1) - Myons and Calorimeters

3 of 3 (high-p_τ; > 20 GeV)

Trigger efficiency 99% (low- p_T) and 98% (high- p_T)

Jets

 Combinations of cluster sums and isolation criteria

•
$$\Sigma E_T^{em,had}$$
, E_T^{miss}

Region of Interest (Rol) mechanism

LVL1 trigger for high pT objects

 Calorimeter cells + Myon chambers find e/γ/τ-jet-μ candidates above threshold

LVL2 uses Regions of Interest as identified by Level-1

 Local data reconstruction, analysis, and matching of subdetector Rols

Rol data volume ist small

 ~2% of throughput, but needs to be extracted with 75 kHz

EF uses entire event

as well as LVL2 results

Online event selection - ingredients

Trigger "slices" - selection of the various physics signatures

- Egamma slice
- Muon slice
 - Jet and EtMiss slice
 - Tau slice
 - Btagging & Bphysics slice

Trigger "steps" - sequence of trigger processing

\rightarrow Minimizing latency and data transfer:

- Process in steps (early rejection), start with Level-1 Region-of-Interest (RoI)
- **Trigger element** = (refined) candidate objects
- **Trigger signature** = combinati
 - = combination of trigger elements
- At each step: compare to list of required trigger signatures

Trigger + data acquisition (TDAQ) - more detail, upto LVL1

Trigger + data acquisition - upto LVL2

Trigger + data acquisition - upto EF and Tier0

Trigger + data acquisition - Muon Rol calibration stream

HLT setup is being exercised at present (Large Scale Tests)

- "Large Scale Tests" being done with hardware provided by CERN IT
- Using the TDAQ framework for run control etc., with up to 1200 dual-processor nodes for Level 2 and Event Filter (~ half of full setup 2008 ff)
- Tests last until 7 Dec now using a few 100 nodes

Tricks needed in HLT processor farms

- Now: 4 CPU cores per box: 2 chips * 2 cores => 8 cores per box
- Typically one Athena process (LVL2: one thread) per core
- Multihreading: naturally assign sharable data to global thread, i.e. have only one copy for all threads
- Geometry, field maps, conditions data... and data which are constant throughout process
- Use also for single-threaded environment (event filter, offline)
- Advantages:
 - Save DB accesses (volume, #connections)
 - Save physical memory
- Athena not there yet...

Flow of Data and Metadata Point1 - CERN Tier0 - Tiers1/2

- Metadata exist per: Event Luminosity-Block Dataset Run
- Detector and LHC Status, Run control, Lumiblock, Monitoring (quality) => non event related metadata
- Dataset related Metadata are derived from these
- Metadata may be refined/enhanced later after data analyses, possibly with manual input
- Event related Metadate (TAG): can contain a small fraction of quality data

Extra slides (details on trigger menus)

Plan for first LHC commissioning with beam - 2*450 GeV

Helmut Burkhardt, 18.11.2006)

	Phase	Beam time [days]
1	First turn	4
2	Establish circulating beam	3
3	450 GeV – initial	3
4a	450 GeV - consolidation	1-2
4b	450 GeV – system commissioning	2-3
5a	2 beam operations	1
5b	Collisions	1-2
		16 days

Given an operational efficiency of 60%, this gives an elapsed time of about 26 days.

Took about a month in LEP and 1y for RHIC

Trigger menus for early running with beam

- Recently discussed on the Trigger & Physics week (30 Oct 3 Nov 2006)
- Details in Nick Ellis' summary including 900 GeV running in 2007 <u>http://indico.cern.ch/materialDisplay.py?contribId=84&sessionId=5&materialId=</u> <u>slides&confId=6824</u>
- Hardware boundary conditions:
- LVL1
 - Ultimate 100 kHz
 - Limited by detector FE electronics and HLT/DAQ capacity
 - Increased dead-time for rates > 75 kHz
 - Nominal 75 kHz
 - In 2008 run hope to have HLT/DAQ that can cope with ~ 45 kHz
 - This depends on funding that is not yet secure!
- LVL2
 - Nominal ~2000 Hz
 - In 2008 run hope to have EF that can cope with ~1000 Hz
 - This depends on available processing power in the EF (money) and also the algorithm execution time per event
 - Depends on offline as well as TDAQ software
- EF
 - Nominal ~200 Hz
 - Depends on capacity of offline computing (Tier-0, etc)
 - Can go to ~300 Hz for short periods as long as daily average is within nominal limits for standard duty cycle

Early 14 TeV running at low luminosity (10³¹) see Nick's slides for 900 GeV running (43 bunches, 10²⁹)

- Which signatures (muon, electron / photon, ...)?
- What thresholds (LVL1, HLT not yet separated LVL2 and EF)?
- Other settings (isolation, use of calo/muon/ID in HLT, etc)
- Use of forced-accepts or HLT "pass-through", etc
- Rates (must be kept within limits of TDAQ and offline systems)
- Coverage for different purposes
 - For physics studies
 - Signal samples
 - Control samples
 - "Insurance policies" for most important physics studies
 - E.g. Ensure that priority physics is covered with loose LVL1 selection (e.g. no isolation) and, initially, with HLT passthrough
 - Complemented with much lower thresholds for other physics, relying on the HLT to get the rate down
 - Also including pre-scaled LVL1 triggers, including minimum bias
 - For detector studies
 - Samples for calibration, alignment and technical studies (e.g. study backgrounds)
 - For trigger studies
 - · Samples for measuring rates and efficiencies
 - Needed to optimize trigger for future running
- Recognize that menu will evolve with time
 - Start of with simple, safe selections
 - · Add complexity (more rejection for same efficiency) as we gain confidence

Muons and B-physics

		Comment	
Item	LVL1 Rate (Hz)		HLT Rate (Hz)
MU4	~1000		
MU6	~240		
MU15	~50	HLT pass-through	~50
MU6 pre-scaled (could use MU4 or combination of both)		HLT pass-through with LVL1 pre-scale factor	~10
MU4 with further HLT muon selection (validation, p _T cut)		mu6 full HLT (rate can be tuned with LVL2 p _T cut value)	~60
MU4 + full scan		B-physics (full scan)	~50
2MU4		2mu4 LVL1 only	?

Electrons and Photons

Item	LVL1 Rate (Hz)	Comment	HLT Rate (Hz)
		Pre-scaled in HLT (factors vary with LVL1	10
EM10	5400	threshold passed)	10
EM15	1500	"	
EM20	470	"	
EM25	240	"	
EM30	130	"	
EM25I	65	HLT pass-through	65
		Standard HLT e15?i? selection	10
		Standard HLT y20?i? selection	10
2EM10	570	Pre-scaled in HLT	10
2EM20	80	HLT pass-through	80
2EM20I	3	HLT pass-through	3
		2e10?i?	?
		2γ15?i?	?
2EM7		J/ψ ee?	?

Jets

Item	LVL1 Rate (Hz)	Comment	HLT Rate (Hz)
		Pre-scale in HLT /	
J20	1750	Require rapidity-gap	3.5+
J40	400	Pre-scale in HLT	2.7
J60	100	Pre-scale in HLT	3.3
J80	40	Pre-scale in HLT	4
J100	15	Pre-scale in HLT	3
J120	8	HLT pass-through	8
2J90	7	HLT pass-through	7
		Pre-scale in HLT /	
3J30	44	Tag b-jets	?
3J40	16	HLT pass-through	16
		Pre-scale in HLT /	
4J20	20	Tag b-jets	?
4J30	12	HLT pass-through	12

Tau and ETmiss

Item	LVL1 Rate (Hz)	Comment	HLT Rate (Hz)
XE?	?	HLT pass-through	~10
		Pre-scale in HLT /	
XE30	~500	Refine selection in HLT	?
		Pre-scale in HLT /	
SUMET300	~1000	Refine selection in HLT	~10
		Pre-scale and	
TAU10i	~7000	refine selection in HLT	~10
		Pre-scale and	
TAU15i	~2300	refine selection in HLT	~10
TAU35i	~190	Refine selection in HLT	~4
TAU?i	?	HLT pass-through	?
J60+XE60	~2	HLT pass-through	~2
		Pre-scale in HLT /	
TAU25I+XE30	?	Refine selection in HLT	?
		Pre-scale in HLT /	
EM25+XE20	~90	Refine selection in HLT	?

Minimum bias, also beam-gas and beam halo

- Objectives
 - Key ingredient in "timing in" the experiment
 - Samples for commissioning of detectors, trigger and offline
 - Studies of minimum-bias physics per se
 - Studies of minimum-bias as backgrounds to other physics
 - Samples for evaluation of efficiencies of LVL1, LVL2, EF and offline reconstruction
- Techniques
 - Bunch-crossing LVL1 trigger + selection at LVL2 and/or EF
 - Bias-free at LVL1
 - Discussion in Standard Model group on how to select non-empty BCs (offline)
 - Implementation at LVL2/EF to be addressed
 - Detectors
 - Minimum-Bias Trigger Scintillators (MBTS) using precision readout
 - Inner detector (pixels sensitive to low p_T)
 - LUCID and other forward detectors?
 - Calorimeters?
 - MBTS trigger at LVL1 (followed by further selection in HLT)
 - Some bias at LVL1 (η range; efficiency for minimum-ionizing particles; multiplicity requirements; etc.)
 - Needed at very low luminosity where interactions per BC << 1