

Dark matter search with DEAP-3600

Dr. Tina Pollmann for the DEAP collaboration MPP Colloquium Nov 5th 2019

The DEAP collaboration. ~90 researchers from Canada, UK, Mexico, Germany, Russia, Italy, Spain

Overview

- The Dark Matter problem and challenges in direct detection of Dark Matter
- The DEAP-3600 detector
 - Design and construction
 - Material screening
 - Radio-clean construction
 - Passive shielding
 - Active shielding (veto)
 - Particle identification
 - Results

160 years ago, the Huggins' discovery of stellar spectra lines gave foundation to the idea that objects throughout the universe are governed by the same physical laws and types of matter we find on earth.

http://stars.astro.illinois.edu/sow/n6543.html#spec

Historic spectrum of NGC 6543 (Cat's Eye Nebula)

William and Margaret Huggins

160 years ago, the Huggins' discovery of stellar spectra lines gave foundation to the idea that objects throughout the universe are governed by the same physical laws and types of matter we find on earth.

Historic spectrum of NGC 6543 (Cat's Eye Nebula)

http://stars.astro.illinois.edu/sow/n6543.html#spec

90 years ago, numerous observations led to the then shocking conclusion that the universe was much bigger than our own galaxy, and that the universe is expanding

"The great spirals, with their enormous radial velocities and insensible proper motions, apparently lie outside our Solar system."

- Edwin Hubble, 1920

But observations quickly showed that some objects do not behave as predicted by our physical laws.

Galactic rotation curves

Velocity of galaxies in clusters

Hubble telescope image archive

"In a spiral galaxy, the ratio of dark-to-light matter is about a factor of ten. That's probably a good number for the ratio of our ignorance-to-knowledge."

- Vera Rubin

And we kept finding objects whose motion does not follow the predicted path.

Galactic rotation curves

Velocity of galaxies in

clusters

Hubble telescope image archive

NASA/CXC/CfA/M.Markevitch et al.; NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.; NASA/STScl; Magellan/U.Arizona/D.Clowe et al

Lensing/microlensing

Structure formation in the universe

Cosmic microwave background

Sloan Digital Sky Survey

6

What do we make of the fact that some objects do not move as we expect them to?

Options:

- a) Our physical laws are not universal
- b) Our physical laws are not correct for large distances (but are still universal)
- c) There are particles and forces we have not observed yet

What do we make of the fact that some objects do not move as we expect them to? Experimentally ruled out to large precision

Options:

- Our physical laws are not universal a)
- b) Our physical laws are not correct for large distances (but are still universal)
- There are particles and forces we have not observed yet C)

What do we make of the fact that some objects do not move as we expect them to? Experimentally ruled out to large precision

Options:

- Our physical laws are not universal a)
- b) Our physical laws are not correct for large distances (but are still universal)
- There are particles and forces we have not observed yet C)

Possible, but cannot explain

all observations

If we posit that a new particle is the solution to the problem, we should try to detect it in a manner more direct than through its gravitational pull.

Direct detection of DM particles from our galactic halo scattering in a teresstrial detector

"I soon became convinced [...] that all the theorizing would be empty brain exercise and therefore a waste of time unless one first ascertained what the population of the universe really consists of. "

Direct dark matter searches look for nuclear recoils in response to elastic scattering of a dark matter particle on a detector nucleus.

Direct dark matter searches look for nuclear recoils in response to elastic scattering of a dark matter particle on a detector nucleus.

Challenge in direct detection: 1) to cover more parameter space, extreme measures must be taken to reduce backgrounds from known particles.

Challenge in direct detection: 2) small signal rates and low energies

	Particles passing through detector [1/s]	Signals in the detector.
Dark matter	10 ⁶ - 10 ¹²	< 1/month

	Particles passing through detector [1/s]	Signals in the detector.
Dark matter	10 ⁶ - 10 ¹²	< 1/month
Muons	10 ⁵	~10 ⁵ /second

To shield against cosmic radiation, the DEAP-3600 detector is located 2 km underground at the SNOLAB research facility.

5:50am, ready to go underground.

"Clean" side of lab. Lunch room.

Radioactive isotopes are everywhere and in everything.

Th and U have long decay chains including ²³²Th Rn, which diffuses into the air and then .4 · 10¹⁰a Primordial isotopes and their daughters: deposits radioactive daughters on all surfaces. Mostly Th-232, U-238, U-235, and K-40 4013 keV ²²⁸Ra ²²⁸Ac ²²⁸Th ß 5.75a 6.13h 1.91a α 5423 keV ²²⁴Ra 3.66d 5685.37 keV ²²⁰Rn 55.6s α 6288.08 keV ²¹⁶Po 0.15s over 2 folks per year. Get α your house tested. RIDDLE ... 6778.3keV -US-RADON You cant smell it 64% ²¹²Bi ²¹²Pb ²¹²Po You cant see it ß 10.64h 300 ns You cant touch it You cant hear it 6050.78 keV 8784.4keV 35%and it can kill you! your dark ²⁰⁸T ²⁰⁸Pb β → matter detector. 3.05m

Radioactive isotopes are everywhere and in everything.

Th and U have long decay chains including ²³²Th Rn, which diffuses into the air and then .4 · 10¹⁰a Primordial isotopes and their daughters: deposits radioactive daughters on all surfaces. Mostly Th-232, U-238, U-235, and K-40 4013 keV ²²⁸Ra ²²⁸Ac 5.75a 6.13h 1.91a Cosmogenic (cosmic ray activation) E.g.: Ar-39, C-14 5423 keV ²²⁴Ra 3.66d 5685.37 keV ²²⁰Rn 55.6s α 6288.08 keV ²¹⁶Po 0.15s folks per year. Get α your house tested. RIDDLE ... 6778.3keV 3-US-RADON You cant smell it 64% ²¹²Bi ²¹²Pb ²¹²Po You cant see it ß 10.64h 300 ns You cant touch it You cant hear it 6050.78 keV 8784.4keV 35%and it can kill you! your dark 208TI ²⁰⁸Pb β → matter detector. 3.05m

Radioactive isotopes are everywhere and in everything.

Th and U have long decay chains including ²³²Th Rn, which diffuses into the air and then .4 · 10¹⁰a Primordial isotopes and their daughters: deposits radioactive daughters on all surfaces. Mostly Th-232, U-238, U-235, and K-40 4013 keV ²²⁸Ac ²²⁸Ra 5.75a 6.13h 1.91a Cosmogenic (cosmic ray activation) E.g.: Ar-39, C-14 5423 keV ²²⁴Ra 3.66d Anthropogenic (man made) E.g.: Cs-137, I-129 5685.37 keV ²²⁰Rn 55.6s α 6288.08 keV ²¹⁶Po 0.15s folks per year. Get α your house tested. RIDDLE ... 6778.3keV 3-US-RADON You cant smell it 64% ²¹²Bi ²¹²Pb ²¹²Po You cant see it ß 10.64h 300 ns You cant touch it You cant hear it 6050.78 keV 8784.4keVand it can kill you! 35% your dark 208TI ²⁰⁸Pb β → matter detector. 3.05m

DEAP

Overview

- The Dark Matter problem and challenges in direct detection of Dark Matter
- The DEAP-3600 detector
 - Design and construction
 - Material screening
 - Radio-clean construction
 - Passive shielding
 - Active shielding (veto)
 - Particle identification
 - Results

All materials used are screened for concentration of radioactive isotopes, and for rate of radon emanation. If the levels are not low enough, as determined from simulation, a different material must be found.

Component	²³⁸ U _{lower}	²³⁸ U _{upper}	²³² Th	²³⁵ U .		
	[mBq/kg]				Source	Emanation Rate
Methyl methacrylate monomer (LG bonding)	1.4 ± 1.0	< 15	< 0.9	< 1.8		$[mBq/m^2]$
AV acrylic	< 0.1	< 2.2	< 0.5	< 0.2	Filler blocks	1.6 ± 0.5
Acrylic beads (RPT)	< 3.1	16 ± 15	$\textbf{0.8}\pm\textbf{0.3}$	0.6 ± 0.5	FINEMET PMT magnetic shielding [40]	0.8 ± 0.2
LG acrylic	< 0.1	< 9.0	< 0.3	< 0.6	FSR film reflector ^a	<010 ± 01 =
304 welded stainless steel (steel shell)	1.4 ± 1.1	< 5.0	4.7 ± 1.5	< 3.3	Twok diffuse reflector	< 0.1
304 stainless steel stock (steel shell)	2.1 ± 1.1	< 112	1.9 ± 1.1	< 5.4	Disch truck shoether	< 0.1
316 stainless steel bolts (steel shell)	< 6.1	< 315	94 ± 9	< 17	Black Lyvek absorber	0.4 ± 0.2
Carbon steel (stock)	2.0 ± 0.7	111 ± 43	10.0 ± 1.0	8.6 ± 1.9	PMT mount PVC (McMaster-Carr stock)	< 0.7
Invar steel (neck)	4.5 ± 1.5	120 ± 77	2.5 ± 1.5	< 3.6	PMT polyethylene foam	< 0.9
R5912 HQE PMT glass	921 ± 34	225 ± 114	139 ± 7	25 ± 3	Teflon sheets (McMaster-Carr stock)	0.4 ± 0.2
R5912 HQE PMT ceramic	978 ± 56	15500 ± 2800	245 ± 28	503 ± 51	High density polyethylene pipe	3.5 ± 0.8
R5912 HQE PMT feedthrough pieces	1140 ± 60	2350 ± 1460	430 ± 32	38 ± 9	304 Stainless Steel (McMaster-Carr stock)	< 1.6
R5912 HQE PMT metal components	< 5.5	-	< 3.3	-	Carbon steel (McMaster-Carr stock)	0.6 ± 0.1
RG59 PMT cable (Belden E82241)	4.5 ± 1.3	91 ± 46	1.2 ± 0.9	3.4 ± 1.4	White PMT mount adhesive styrofoam sheet	< 15
PMT mount PVC (Harvel)	72 ± 5	232 ± 130	18.6 ± 2.5	5.6 ± 1.5	Stycast 1266 A/B (Emorson & Cuming)	< 1.5
PMT mount copper	< 0.5	< 10	< 0.8	< 1.3	Stycast 1200 A/B (Enterson & Cunning)	< 4.2
Neck Veto PMT glass	1230 ± 620	-	407 ± 203	57 ± 29		
Filler block polyethylene	0.4 ± 0.3	< 14	< 0.1	< 0.15	RG59 PM1 cable (Belden E82241)	0.026 ± 0.001
Filler block Styrofoam [42]	33.5 ± 3.4	115 ± 64	< 1.5	< 1.4	Steel shell EPDM O-ring	16.1 ± 1.8
White Tyvek paper (diffuse reflector)	< 0.3	50 ± 37	1.3 ± 0.8	< 2.2	Viton O-ring	1.3 ± 0.2
Black Tyvek paper (LG wrapping)	< 1.8	< 127	5.6 ± 2.3	< 3.8	Buna 451 O-ring	17 ± 2
Black polyethylene tube (upper neck)	13.7 ± 1.8	< 60	3.2 ± 1.1	2.6 ± 1.4		[mBg/unit]
TPB (Sigma Aldrich)	< 3.9	-	< 8.7	-	Hamamatsu R5912 PMTs	< 0.3
Purification System Welding					PMT mount O-ring	0.3 ± 0.1
TIG weld sample	7.7	±5.7 <27	$25.2\pm$	7.8 < 16		
SMAW weld sample	< 2	3 < 12	55 51.9 \pm	12.2 < 13		
Welding electrodes A (Blue Demon TE2C-116	6-10T) 221	±65 <493	3 1890 ±	= 184 < 56		
Welding electrodes B (Blue Demon TE2C-116	6-10T) 66.	6 ± 42.6 < 130	$710 \pm 710 \pm 700$	103 < 138		
Welding electrodes C (Blue Demon TE2C-116	6-10T) 86.	$1 \pm 21.8 < 642$	$2 911 \pm 3$	$73 \rightarrow \sqrt{108}$	moudruz at al. (The DEAD collaboration)	"Dooign and
Weld Eller Ads P niner Av Sanding	< 4		7 3.0 ± 2	cons	struction of the DEAP-3600 dark matter	detector." 7
Brazed diamond sanding pad (Superabrasive	s) 141	±24 < 84	5 49.8±	17.9 3Astr	oparticle Physics 108 arXiv:1905.05811	(2019).
Plated diamond sanding pad (Superabrasives	5) 468	$30 + 283 < 41^{\circ}$	6180 +	-300 218 ± 0	64	

Overview

- The Dark Matter problem and challenges in direct detection of Dark Matter
- The DEAP-3600 detector
 - Design and construction
 - Material screening
 - Radio-clean construction
 - Passive shielding
 - Active shielding (veto)
 - Particle identification
 - Results

The heart of the detector is a 3.6 (currently 3.3) tonne LAr volume.

Liquid Argon (84 K, -188°C) single-phase

Lab-grade argon is further purified to sub-ppb levels of electronegative impurities (O_2 , N_2 , ...) and 10^{-26} g/g (0.15 µBq/kg) Rn²²² (custom Rn trap).

The LAr target is held in a cryostat made from ultra-pure acrylic.

Acrylic vessel during construction.

ANN MAR

Raw AV sphere in factory.

AV from custom-made clean (<10⁻¹⁹g/g ²¹⁰Pb, ~ppt U and Th) acrylic, assembled u/g.

Source acrylic sheet.

Raw AV sphere in factory.

AV from custom-made clean (<10⁻¹⁹g/g ²¹⁰Pb, ~ppt U and Th) acrylic, assembled u/g.

Source acrylic sheet.

Under air-tight conditions, resurfacer removed fraction of a mm off the acrylic cryostat's inside, reducing radon daughter activity to < 10 $\alpha/m^2/day$.

Under air-tight conditions, resurfacer removed fraction of a mm off the acrylic cryostat's inside, reducing radon daughter activity to < 10 $\alpha/m^2/day$.

3µm TPB layer on dummy sphere.

Image credit: Wikipedia

420 nm

- TPB wavelength shifter.

Acrylic vessel.

Broerman, B, et al. "Application of the TPB Wavelength Shifter to the DEAP-3600 Spherical Acrylic Vessel Inner Surface ." JINST 12 (2017)

50 cm of plastic provide thermal isolation and neutron shielding.

n

Filler block. Light guide.

Acrylic vessel.

255 Hamamatsu R5912-HQE PMTs view the LAr volume at 71% surface coverage. PMT temperature > -40C.

`Light guide._

Ron Calls on his years of experience....and freezes at the controls > Attila Nagy 2/06/16 7:09am

These gadgets looks so cool and movie prop-ish that it's a little hard to beleive they're real.haha

 \hookrightarrow Reply

User comment to Gizmodo article about SNOLAB.

Replica from CBS TV show 'Scorpion'.

Real detector.

 $\overset{\wedge}{\boxtimes}$

1

Overview

- The Dark Matter problem and challenges in direct detection of Dark Matter
- The DEAP-3600 detector
 - Design and construction
 - Material screening
 - Radio-clean construction
 - Passive shielding
 - Active shielding (veto)
 - Particle identification
 - Results

The detector is housed in a steel shell and submerged in a water-Cherenkov veto tank for active and passive neutron shielding.

Steel shell. Veto PMT.

(Earth) magnetic field

Overview

- The Dark Matter problem and challenges in direct detection of Dark Matter
- The DEAP-3600 detector
 - Design and construction
 - Material screening
 - Radio-clean construction
 - Passive shielding
 - Active shielding (veto)
 - Particle identification
 - Results

Background suppression in LAr relies on pulse shape discrimination (PSD), and works well because of the large difference in the lifetimes of the two excimer states.

Pulse shapes are driven by argon singlet (6 ns) and triplet (1.3 µs) decay, and singlet/triplet ratio depends on linear energy transfer from exciting particle.

Overview

- The Dark Matter problem and challenges in direct detection of Dark Matter
- The DEAP-3600 detector
 - Design and construction
 - Material screening
 - Radio-clean construction
 - Passive shielding
 - Active shielding (veto)
 - Particle identification
 - Results

Hollywood predicts that DEAP finds Dark Matter

DEAP 3600

Credits: CBS, Scorpion. They made creative use of the DEAP detector design so they can't complain about the creative use of their material here.

Hollywood predicts that DEAP finds Dark Matter

DEAP 3600

Credits: CBS, Scorpion. They made creative use of the DEAP detector design so they can't complain about the creative use of their material here.

Hollywood predicts that DEAP finds Dark Matter

Credits: CBS, Scorpion. They made creative use of the DEAP detector design so they can't complain about the creative use of their material here.

Simple analysis algorithms already achieve very good background identification and suppression.

Leakage prediction for ER background @ 90% signal acceptance: 3·10⁻⁷ in lowest keV 4·10⁻⁹ in full energy ROI (~50 to 100 keVnr)

With a factor 1000 reduction in Ar-39 activity when using underground argon, a 20 kT detector can easily reach similar discrimination power, given similar light yield.

"Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600' at SNOLAB" **43** PRD 100 (2019); arXiv:1902.04048

"Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600' at SNOLAB" **44** PRD 100 (2019); arXiv:1902.04048 The spectrum of electromagnetic backgrounds matches what we expect from material screening results and MC simulation.

Ajaj, R, G R Araujo, et al. (The DEAP collaboration) "Electromagnetic Backgrounds and Potassium-42 Activity in the **45** DEAP-3600 Dark Matter Detector." *arXiv:1905.05811 (*2019). Surface backgrounds are removed by fiducialization with ~2 cm resolution position reconstruction.

"surface backgrounds"

Event position is reconstructed from hit pattern across the PMT array, and photon arrival times. ~2cm resolution at border of ROI. Surface backgrounds are removed by fiducialization with ~2 cm resolution position reconstruction.

"surface backgrounds"

Event position is reconstructed from hit pattern across the PMT array, and photon arrival times. ~2cm resolution at border of ROI. Background rates achieved are competitive in Rn-222 level; overall dominated by unexpected contamination of flow guides.

Rn-222 in the bulk target material (measured)

	²²² Rn activity		
DEAP-3600	0.15 µBq/kg		
PandaX-II	6.6 µBq/kg		
LUX	66 µHz/kg		
XENON1T	10 µBq/kg		

Background predictions in ROI

	Source	$N^{ m CR}$	N^{ROI}
γ 's	ERs	2.44×10^9	0.03 ± 0.01
β/β	Cherenkov	$< 3.3 \times 10^5$	< 0.14
Ś	Radiogenic	6 ± 4	$0.10^{+0.10}_{-0.09}$
u	Cosmogenic	< 0.2	< 0.11
ν	AV surface	<3600	< 0.08
Q	Neck FG	28^{+13}_{-10}	$0.49^{+0.27}_{-0.26}$
	Total	N/A	$0.62^{+0.31}_{-0.28}$

- PandaX-II: PHYSICAL REVIEW D 93, 122009 (2016)
- LUX: Physics Procedia 61 (2015) 658 665
- XENON1T: XeSAT 2017 talk

Flow guides (FG)

Detector response stable to better than 5% over a year of data taking.

Background-free (0.62 background events expected in ROI) search with 758 tonne-days (231 live days) exposure. Most sensitive limit on LAr above 30 GeV.

49

Multiple smaller collaborations with extensive R&D background on detectors based on liquid argon technology have joined to build DarkSide-20k and Argo.

Present

Future

Group	Location	Detector	Target mass	Status/results			
DEAP	SNOLAB (Canada)	DEAP-1	7 kg	R&D			
		DEAP-3600	1000 kg	running			
CLEAN	Yale	MicroCLEAN	4.3 kg	R&D	sicists	DS-20k	Argo
	SNOLAB	MiniCLEAN	150 kg	decommissioni ng	yhys	@LNGS ~2022	0(100t) @SNOLAB
DarkSide	LNGS (Italy) DS	DS-10	10 kg	R&D	~35(CONCLAD
		DS-50	46 kg	6E-44			
ArDM	Canfranc (Spain)	ArDM-1t	1000 kg	R&D			

Both argon and xenon-based detectors are proceeding to cover the parameter space down to the "neutrino floor" in the 'high mass region'.

The parameter space for WIMPs has not been fully probed through direct detection.

Summary and Outlook

- DEAP is a tonne-scale single-phase LAr detector operated under 6 km water-equivalent rock shielding.
- Analyzed 1 year open dataset (Nov 2016 Oct 2017)
 - ~758 tonne-day exposure (after data quality cuts) with stable detector conditions
 - Most radon-pure noble gas ever achieved
 - Best PSD on LAr ever demonstrated
 - Background-free search for WIMP-nucleon cross section limit <3.9x10⁻⁴⁵ cm² @100 GeV/c² (90% CL)
- Blind data since Jan 2018

DEAP