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Overview

• Schematic overview: The Sequence of a Proton-Proton Collision

• A closer look: Factorization, PDFs, Hadronization and Jets


• Pile-up at LHC
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The Schematic Sequence of a p+p Collision
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The Schematic Sequence of a p+p Collision

• Beam particles: Substructure described by parton distribution funktions (PDFs)
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The Schematic Sequence of a p+p Collision

• Hard interaction: Described by the matrix element - This is what we usually 
draw as Feynman graphs
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The Schematic Sequence of a p+p Collision

• Decay of short-lived particles connected to the hard interaction
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The Schematic Sequence of a p+p Collision

• Initial-State Radiation: Parton showers
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The Schematic Sequence of a p+p Collision

• Final-State Radiation: Parton showers
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The Schematic Sequence of a p+p Collision

• “Underlying Event”: Lower-energy processes of the other constituents of the 
beam particles
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The Schematic Sequence of a p+p Collision

• ... and the corresponding initial and final state radiation
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The Schematic Sequence of a p+p Collision

• Beam remnants and outgoing partons


• Confinement requires the formation of color-neutral objects: Hadronization


• Short-lived states decay, the other particles reach the detector

11Particle Physics at Colliders and in the High Energy Universe: 
WS 19/20, 04: Particle Collisions at High Energy



Frank Simon (fsimon@mpp.mpg.de)

The Full Chain 
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f(x, Q2): Parton distribution function

matrix element: hard process

parton shower: QCD radiation / splitting

hadronization: transition from q,g to hadrons: non-perturbative, 
described by models!
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A Closer Look

• The theoretical foundation: Factorization


• The proton structure: Parton Distribution Functions


• Hadronisation


• Jets
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The Factorization Theorem
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The Factorization Theorem
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• The cross section for a high-energy process can be split into universal 
parton distributions, a partonic matrix element and (if applicable, 
depending on the final state) a fragmentation function:
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Factorization: More complex Processes
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• Often more than one partonic sub-process contribute to a given final state

• depending on the final state several fragmentation functions can enter


• The parton distribution functions and the fragmentation functions depend on 
the hard scale (the energy transfer) 


• Example: ttbar - production at LHC
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The Structure of the Proton

• The main experimental probe: Deep 
inelastic scattering (DIS)
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The Structure of the Proton
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The Structure of the Proton

• The main experimental probe: Deep 
inelastic scattering (DIS)
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Parton Distribution Functions

• PDFs describe the distribution of 
the momentum fraction of 
different partons in the gluon

• Depends on momentum transfer!
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Parton Distribution Functions

• With higher energy ( = higher Q2): Resolving “finer structures” - predominantly 
gluons, sea quarks

• Highly relevant at LHC energies (Q2 = 10000 GeV2 a typical (lower) value for many 

LHC processes)
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Parton Distribution Functions: Evolution
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• The PDFs depend on the scale at which they are evaluated

• QCD provides a description of the scale evolution of the PDFs: If they are known 

at one scale, they can be calculated for other scales as well

• But: Only the evolution can be calculated, not the distributions themselves (e.g., 

not the structure of the proton) - these need to be measured


‣ Homogeneous evolution equations: DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) evolution equations


• Important components: Splitting functions


• Describe the probability to find a parton i with the momentum fraction z in 
parton k
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Additional Corrections: Parton Shower
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• The cross section of a process is given by the matrix element and the PDFs

• For hard radiation ME at O(αsn) is used

• The precision of the ME is usually given by the order to which it is calculated: 

LO, NLO, NNLO (already quite rare)...
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• The cross section of a process is given by the matrix element and the PDFs

• For hard radiation ME at O(αsn) is used

• The precision of the ME is usually given by the order to which it is calculated: 

LO, NLO, NNLO (already quite rare)...

➫ Soft radiation at higher orders described by parton showers

initial state PS

final state PS
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Additional Corrections: Parton Shower
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• The cross section of a process is given by the matrix element and the PDFs

• For hard radiation ME at O(αsn) is used

• The precision of the ME is usually given by the order to which it is calculated: 

LO, NLO, NNLO (already quite rare)...

• Parton showers: radiation of gluons, the probability that no radiation takes place is 
described by “Sudakov factors” (before/after scattering)


• Parton showers do not change the cross section -> radiation harder than the 
matrix element is forbidden (“matching”) 

➫ Soft radiation at higher orders described by parton showers

initial state PS

final state PS
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Final States: Hadronization
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• Describes how hadrons are formed from the final-state partons

• Experimentally: Measured fragmentation functions


• For computer simulations: Two commonly used models:

P ⇥ exp

�
�⇥(m2

q + p2
t,q)

�

⇥

• The Lund string model (Jetset)

• The colored strings between two 

partons fragment, given by a string 
tension of κ = 1 GeV/fm


• Radiation of hard gluons


• If the energy in a string is sufficient, a 
q-Anti-q oder a qqq state is 
produced 
Probability:
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Final States: Hadronization
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• Both of these hadronization models are often compared to obtain an estimate 
of systematic uncertainties - which are then given by the differences between 
the two models

• The  Cluster Model (Herwig)

• Gluons at the end of a shower are 

non-pertubatively transformed into q-
Anti-q pairs 


• Locally color-neutral clusters with a 
few GeV mass are formed out of 
quarks 


• Depending on their mass, these 
clusters are split into two, or are 
transformed into hadron pairs or 
single hadrons
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Jets: Connecting Final States to Partons

• In HEP: typically not interested in a particular final-state hadron, but in 
information about the original final-state parton (quark or gluon)
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Di-Jet Event at the Tevatron
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proton - antiproton collision
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Di-Jet Event at the Tevatron
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proton - antiproton collision
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Di-Jets at LHC
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di-jet invariant mass 9 TeV
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LHC 4 - Jet Event
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LHC 8 - Jet Event
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Defining Jets

• To compare experimental observations to theory, jets have to be defined in a 
clean and stable way

• Challenges arise in the assignment of particles to jets - there is no unambiguous 

assignment
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overlapping jets: 
collinear divergence

low-energy jets: 
infrared divergence

• A naive (but intuitive) jet definition as cones of energy fails in problematic 
cases: not “collinear and infrared safe”
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Defining Jets

• The solution: Iteratively combine particles to jets based on a distance criterion 
based on (transverse) momentum and geometrical separation 
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The kT algorithm

y: rapidity (= 1/2 ln [ (E+pz) / (E-pz) ])

φ: azimuthal angle

calculate for all (pseudo-) particle pairs - combine the two with the smallest 
dij to a new pseudo-particle; repeat, if diB (“beam distance”) is smallest 
define i as a jet, remove from list; continue until all particles are included in 
jets

R is a “resolution parameter” up to which objects can be separated, drives 
behavior of algorithm
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Defining Jets

• The solution: Iteratively combine particles to jets based on a distance criterion 
based on (transverse) momentum and geometrical separation 
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The anti- kT algorithm (most common at LHC today)

y: rapidity (= 1/2 ln [ (E+pz) / (E-pz) ])

φ: azimuthal angle

Same procedure as kT algorithm.


The difference: The anti-kT algorithm starts from the highest-energy particles 
(large kT), while kT starts at low energy: Impact on the shape of jets - both 
are collinear and infrared safe, and thus good for theory

Typical R values at LHC: 0.4 - 0.7
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Jet Algorithms and Clustering Behavior
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using only 
energy and 
angle between 
particles
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Additional Complications: Pileup

• The total p+p cross section is relatively 
large: High probability for interaction
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�(tt̄)/�tot � 10�8

�(H,MH = 150GeV)/�tot � 10�10

G. Weiglein et al. 
Physics Reports 426 (2006) 47–358

• Interesting processes are rare 
compared to the overall cross section:
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�(tt̄)/�tot � 10�8

�(H,MH = 150GeV)/�tot � 10�10

G. Weiglein et al. 
Physics Reports 426 (2006) 47–358

‣ Very high event rates required!

• Interesting processes are rare 
compared to the overall cross section:

LHC luminosity: ~ 2 x 1034 cm-2s-1

total cross section: ~ 100 mb = 10-25 cm2

Interaction rate: ~ 2 GHz, with collisions 
every 25 ns: ~ 50 reactions per bunch 
crossing => “pile up”
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Pile-up at LHC

33Particle Physics at Colliders and in the High Energy Universe: 
WS 19/20, 04: Particle Collisions at High Energy

Z -> μμ
... and 25 other collisions

(from 2012 at 8 TeV, today 

~ x 2 !)

An interesting problem for 
jet finding, data analysis 
and detectors…
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Summary

• Proton-proton collisions are described by a sequence of processes at different 
scales:

• The proton structure described by PDFs


• The hard process given by the matrix element


• The hadronization described by fragmentation functions / by models


• + additional particles and corrections from the strong interaction


• The factorization theorem of QCD allows a splitting of the description of these 
processes into clearly defined parts, which can be considered more or less 
independently


• Jets are the typical final states at LHC: theoretically associated with final-state 
quarks and gluons - definition of jets requires care to be theoretically “safe”
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Next Lecture: The Higgs Boson, F. Simon 11.11.2019
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Lecture Overview
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